Machine learning-based cluster analysis identifies four unique phenotypes of patients with degenerative cervical myelopathy with distinct clinical profiles and long-term functional and neurological outcomes.
Karlo M Pedro, Mohammed Ali Alvi, Nader Hejrati, Ayesha I Quddusi, Anoushka Singh, Michael G Fehlings
{"title":"Machine learning-based cluster analysis identifies four unique phenotypes of patients with degenerative cervical myelopathy with distinct clinical profiles and long-term functional and neurological outcomes.","authors":"Karlo M Pedro, Mohammed Ali Alvi, Nader Hejrati, Ayesha I Quddusi, Anoushka Singh, Michael G Fehlings","doi":"10.1016/j.ebiom.2024.105226","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Degenerative cervical myelopathy (DCM), the predominant cause of spinal cord dysfunction among adults, exhibits diverse interrelated symptoms and significant heterogeneity in clinical presentation. This study sought to use machine learning-based clustering algorithms to identify distinct patient clinical profiles and functional trajectories following surgical intervention.</p><p><strong>Methods: </strong>In this study, we applied k-means and latent profile analysis (LPA) to identify patient phenotypes, using aggregated data from three major DCM trials. The combination of Nurick score, NDI (neck disability index), neck pain, as well as motor and sensory scores facilitated clustering. Goodness-of-fit indices were used to determine the optimal cluster number. ANOVA and post hoc Tukey's test assessed outcome differences, while multinomial logistic regression identified significant predictors of group membership.</p><p><strong>Findings: </strong>A total of 1047 patients with DCM (mean [SD] age: 56.80 [11.39] years, 411 [39%] females) had complete one year outcome assessment post-surgery. Latent profile analysis identified four DCM phenotypes: \"severe multimodal impairment\" (n = 286), \"minimal impairment\" (n = 116), \"motor-dominant\" (n = 88) and \"pain-dominant\" (n = 557) groups. Each phenotype exhibited a unique symptom profile and distinct functional recovery trajectories. The \"severe multimodal impairment group\", comprising frail elderly patients, demonstrated the worst overall outcomes at one year (SF-36 PCS mean [SD]: 40.01 [9.75]; SF-36 MCS mean [SD], 46.08 [11.50]) but experienced substantial neurological recovery post-surgery (ΔmJOA mean [SD]: 3.83 [2.98]). Applying the k-means algorithm yielded a similar four-class solution. A higher frailty score and positive smoking status predicted membership in the \"severe multimodal impairment\" group (OR 1.47 [95% CI 1.07-2.02] and 1.58 [95% CI 1.25-1.99, respectively]), while undergoing anterior surgery and a longer symptom duration were associated with the \"pain-dominant\" group (OR 2.0 [95% CI 1.06-3.80] and 3.1 [95% CI 1.38-6.89], respectively).</p><p><strong>Interpretation: </strong>Unsupervised learning on multiple clinical metrics predicted distinct patient phenotypes. Symptom clustering offers a valuable framework to identify DCM subpopulations, surpassing single patient reported outcome measures like the mJOA.</p><p><strong>Funding: </strong>No funding was received for the present work. The original studies were funded by AO Spine North America.</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283058/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2024.105226","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Degenerative cervical myelopathy (DCM), the predominant cause of spinal cord dysfunction among adults, exhibits diverse interrelated symptoms and significant heterogeneity in clinical presentation. This study sought to use machine learning-based clustering algorithms to identify distinct patient clinical profiles and functional trajectories following surgical intervention.
Methods: In this study, we applied k-means and latent profile analysis (LPA) to identify patient phenotypes, using aggregated data from three major DCM trials. The combination of Nurick score, NDI (neck disability index), neck pain, as well as motor and sensory scores facilitated clustering. Goodness-of-fit indices were used to determine the optimal cluster number. ANOVA and post hoc Tukey's test assessed outcome differences, while multinomial logistic regression identified significant predictors of group membership.
Findings: A total of 1047 patients with DCM (mean [SD] age: 56.80 [11.39] years, 411 [39%] females) had complete one year outcome assessment post-surgery. Latent profile analysis identified four DCM phenotypes: "severe multimodal impairment" (n = 286), "minimal impairment" (n = 116), "motor-dominant" (n = 88) and "pain-dominant" (n = 557) groups. Each phenotype exhibited a unique symptom profile and distinct functional recovery trajectories. The "severe multimodal impairment group", comprising frail elderly patients, demonstrated the worst overall outcomes at one year (SF-36 PCS mean [SD]: 40.01 [9.75]; SF-36 MCS mean [SD], 46.08 [11.50]) but experienced substantial neurological recovery post-surgery (ΔmJOA mean [SD]: 3.83 [2.98]). Applying the k-means algorithm yielded a similar four-class solution. A higher frailty score and positive smoking status predicted membership in the "severe multimodal impairment" group (OR 1.47 [95% CI 1.07-2.02] and 1.58 [95% CI 1.25-1.99, respectively]), while undergoing anterior surgery and a longer symptom duration were associated with the "pain-dominant" group (OR 2.0 [95% CI 1.06-3.80] and 3.1 [95% CI 1.38-6.89], respectively).
Interpretation: Unsupervised learning on multiple clinical metrics predicted distinct patient phenotypes. Symptom clustering offers a valuable framework to identify DCM subpopulations, surpassing single patient reported outcome measures like the mJOA.
Funding: No funding was received for the present work. The original studies were funded by AO Spine North America.
EBioMedicineBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍:
eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.