{"title":"Constraining current neuroanatomical models of reading: the view from Arabic.","authors":"Mohamed L Seghier, Sami Boudelaa","doi":"10.1007/s00429-024-02827-y","DOIUrl":null,"url":null,"abstract":"<p><p>There is a growing interest in imaging understudied orthographies to unravel their neuronal correlates and their implications for existing computational and neuroanatomical models. Here, we review current brain mapping literature about Arabic words. We first offer a succinct description of some unique linguistic features of Arabic that challenge current cognitive models of reading. We then appraise the existing functional neuroimaging studies that investigated written Arabic word processing. Our review revealed that (1) Arabic is still understudied, (2) the most investigated features concerned the effects of vowelling and diglossia in Arabic reading, (3) findings were not always discussed in the light of existing reading models such as the dual route cascaded, the triangle, and the connectionist dual process models, and (4) current evidence is unreliable when it comes to the exact neuronal pathways that sustain Arabic word processing. Overall, despite the fact that Arabic has some unique linguistic features that challenge and ultimately enrich current reading models, the existing functional neuroimaging literature falls short of offering a reliable evidence about brain networks of Arabic reading. We conclude by highlighting the need for more systematic studies of the linguistic features of Arabic to build theoretical and neuroanatomical models that are concurrently specific and general.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-024-02827-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is a growing interest in imaging understudied orthographies to unravel their neuronal correlates and their implications for existing computational and neuroanatomical models. Here, we review current brain mapping literature about Arabic words. We first offer a succinct description of some unique linguistic features of Arabic that challenge current cognitive models of reading. We then appraise the existing functional neuroimaging studies that investigated written Arabic word processing. Our review revealed that (1) Arabic is still understudied, (2) the most investigated features concerned the effects of vowelling and diglossia in Arabic reading, (3) findings were not always discussed in the light of existing reading models such as the dual route cascaded, the triangle, and the connectionist dual process models, and (4) current evidence is unreliable when it comes to the exact neuronal pathways that sustain Arabic word processing. Overall, despite the fact that Arabic has some unique linguistic features that challenge and ultimately enrich current reading models, the existing functional neuroimaging literature falls short of offering a reliable evidence about brain networks of Arabic reading. We conclude by highlighting the need for more systematic studies of the linguistic features of Arabic to build theoretical and neuroanatomical models that are concurrently specific and general.
期刊介绍:
Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.