Performance Assessment of GaAs Pocket-Doped Dual-Material Gate-Oxide-Stack DG-TFET at Device and Circuit Level

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Km. Sucheta Singh, Satyendra Kumar, Saurabh Chaturvedi, Kapil Dev Tyagi, Vaibhav Bhushan Tyagi
{"title":"Performance Assessment of GaAs Pocket-Doped Dual-Material Gate-Oxide-Stack DG-TFET at Device and Circuit Level","authors":"Km. Sucheta Singh,&nbsp;Satyendra Kumar,&nbsp;Saurabh Chaturvedi,&nbsp;Kapil Dev Tyagi,&nbsp;Vaibhav Bhushan Tyagi","doi":"10.1049/2024/9925894","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This study explores the impact of integrating a gallium arsenide (GaAs) pocket at the source and drain in a dual-material gate-oxide-stack double-gate tunnel field-effect transistor (DMGOSDG-TFET). The performance of this DMGOSDG-TFET, employing work-function engineering and gate-oxide-stack techniques, is compared with a GaAs pocket-doped DMGOSDG-TFET. Using the Silvaco Technology Computer-Aided Design tool, the comparison covers DC characteristics, analog/RF behavior, and circuit-level assessments. The research introduces an optimized heterostructure pocket-doped DMGOSDG-TFET to enhance DC characteristics, analog/RF performance, and DC/transient analysis. This novel architecture effectively suppresses ambipolarity, making it more suitable for current conduction. The incorporation of work-function engineering and a gate-oxide-stack approach enhances the device’s current driving capability, while the use of a highly doped GaAs pocket at the source and drain virtually eliminates ambipolar current conduction. Simulation results indicate that the proposed heterostructure device exhibits a high ON-current and switching ratio. For analog/RF applications, the optimized heterostructure device outperforms conventional DMGOSDG-TFET, offering higher cutoff frequency, transconductance, and other analog/RF parameters. Circuit-level performance is assessed using HSPICE, with a focus on the implementation of a resistive-load inverter for both proposed and conventional device topologies through DC and transient evaluations.</p>\n </div>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"2024 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/9925894","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Circuits Devices & Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/9925894","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the impact of integrating a gallium arsenide (GaAs) pocket at the source and drain in a dual-material gate-oxide-stack double-gate tunnel field-effect transistor (DMGOSDG-TFET). The performance of this DMGOSDG-TFET, employing work-function engineering and gate-oxide-stack techniques, is compared with a GaAs pocket-doped DMGOSDG-TFET. Using the Silvaco Technology Computer-Aided Design tool, the comparison covers DC characteristics, analog/RF behavior, and circuit-level assessments. The research introduces an optimized heterostructure pocket-doped DMGOSDG-TFET to enhance DC characteristics, analog/RF performance, and DC/transient analysis. This novel architecture effectively suppresses ambipolarity, making it more suitable for current conduction. The incorporation of work-function engineering and a gate-oxide-stack approach enhances the device’s current driving capability, while the use of a highly doped GaAs pocket at the source and drain virtually eliminates ambipolar current conduction. Simulation results indicate that the proposed heterostructure device exhibits a high ON-current and switching ratio. For analog/RF applications, the optimized heterostructure device outperforms conventional DMGOSDG-TFET, offering higher cutoff frequency, transconductance, and other analog/RF parameters. Circuit-level performance is assessed using HSPICE, with a focus on the implementation of a resistive-load inverter for both proposed and conventional device topologies through DC and transient evaluations.

Abstract Image

器件和电路级掺砷化镓袖珍型双材料栅氧化物叠层 DG-TFET 性能评估
本研究探讨了在双材料栅氧化物叠层双栅隧道场效应晶体管(DMGOSDG-TFET)的源极和漏极集成砷化镓(GaAs)口袋的影响。这种 DMGOSDG-TFET 采用了功函数工程和栅氧化物叠层技术,其性能与掺砷化镓口袋的 DMGOSDG-TFET 进行了比较。通过使用 Silvaco Technology 计算机辅助设计工具,比较涵盖了直流特性、模拟/射频行为和电路级评估。研究介绍了一种优化的异质结构袋式掺杂 DMGOSDG-TFET,以增强直流特性、模拟/射频性能和直流/瞬态分析。这种新颖的结构有效抑制了伏极性,使其更适合电流传导。功函数工程和栅氧化物堆叠方法的结合增强了器件的电流驱动能力,而在源极和漏极使用高掺杂砷化镓口袋几乎消除了伏极性电流传导。仿真结果表明,所提出的异质结构器件具有很高的导通电流和开关比。在模拟/射频应用方面,优化的异质结构器件优于传统的 DMGOSDG-TFET,具有更高的截止频率、跨导和其他模拟/射频参数。通过直流和瞬态评估,使用 HSPICE 对电路级性能进行了评估,重点评估了拟议器件拓扑和传统器件拓扑的阻性负载逆变器的实施情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Circuits Devices & Systems
Iet Circuits Devices & Systems 工程技术-工程:电子与电气
CiteScore
3.80
自引率
7.70%
发文量
32
审稿时长
3 months
期刊介绍: IET Circuits, Devices & Systems covers the following topics: Circuit theory and design, circuit analysis and simulation, computer aided design Filters (analogue and switched capacitor) Circuit implementations, cells and architectures for integration including VLSI Testability, fault tolerant design, minimisation of circuits and CAD for VLSI Novel or improved electronic devices for both traditional and emerging technologies including nanoelectronics and MEMs Device and process characterisation, device parameter extraction schemes Mathematics of circuits and systems theory Test and measurement techniques involving electronic circuits, circuits for industrial applications, sensors and transducers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信