Connectivity preservation control for multiple unmanned aerial vehicles in the presence of bounded actuation

IF 6.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
{"title":"Connectivity preservation control for multiple unmanned aerial vehicles in the presence of bounded actuation","authors":"","doi":"10.1016/j.isatra.2024.06.021","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel multi-unmanned aerial vehicle (UAV) connectivity preservation controller, suitable for scenarios with bounded actuation<span> and limited communication range. According to the hierarchical control strategy, controllers are designed separately for the position and attitude subsystems. A distributed position controller is developed, integrating an indirect coupling control mechanism. The innovative mechanism associates each UAV with a virtual proxy, facilitating connections among adjacent UAVs through these proxies. This structuring assists in managing the actuator<span> saturation constraints effectively. The artificial potential function is utilized to preserve network connectivity and fulfill coordination among all virtual proxies. Additionally, an attitude controller designed for finite-time convergence guarantees that the attitude subsystem adheres precisely to the attitude specified by the distributed position controller. Simulation results validate the efficacy of this distributed formation controller with connectivity preservation under bounded actuation conditions. The simulation results confirm the effectiveness of the distributed connectivity preservation controller with bounded actuation.</span></span></p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824003082","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel multi-unmanned aerial vehicle (UAV) connectivity preservation controller, suitable for scenarios with bounded actuation and limited communication range. According to the hierarchical control strategy, controllers are designed separately for the position and attitude subsystems. A distributed position controller is developed, integrating an indirect coupling control mechanism. The innovative mechanism associates each UAV with a virtual proxy, facilitating connections among adjacent UAVs through these proxies. This structuring assists in managing the actuator saturation constraints effectively. The artificial potential function is utilized to preserve network connectivity and fulfill coordination among all virtual proxies. Additionally, an attitude controller designed for finite-time convergence guarantees that the attitude subsystem adheres precisely to the attitude specified by the distributed position controller. Simulation results validate the efficacy of this distributed formation controller with connectivity preservation under bounded actuation conditions. The simulation results confirm the effectiveness of the distributed connectivity preservation controller with bounded actuation.

多架无人飞行器在有界驱动情况下的连接性保护控制。
本文提出了一种新型多无人飞行器(UAV)连接保护控制器,适用于执行力受限和通信范围有限的情况。根据分层控制策略,分别为位置和姿态子系统设计了控制器。开发的分布式位置控制器集成了间接耦合控制机制。这种创新机制将每个无人飞行器与一个虚拟代理关联起来,通过这些代理促进相邻无人飞行器之间的连接。这种结构有助于有效管理致动器饱和约束。人工势函数用于保持网络连接,并实现所有虚拟代理之间的协调。此外,设计用于有限时间收敛的姿态控制器可确保姿态子系统精确地遵循分布式位置控制器指定的姿态。仿真结果验证了这种分布式编队控制器在有界执行条件下保持连接性的有效性。仿真结果证实了分布式连通性保持控制器在有界驱动条件下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISA transactions
ISA transactions 工程技术-工程:综合
CiteScore
11.70
自引率
12.30%
发文量
824
审稿时长
4.4 months
期刊介绍: ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信