Siyuan Guo, Jiajia Zhang, Yichao Wu, Alexander C. McLain, James W. Hardin, Bankole Olatosi, Xiaoming Li
{"title":"Functional Multivariable Logistic Regression With an Application to HIV Viral Suppression Prediction","authors":"Siyuan Guo, Jiajia Zhang, Yichao Wu, Alexander C. McLain, James W. Hardin, Bankole Olatosi, Xiaoming Li","doi":"10.1002/bimj.202300081","DOIUrl":null,"url":null,"abstract":"<p>Motivated by improving the prediction of the human immunodeficiency virus (HIV) suppression status using electronic health records (EHR) data, we propose a functional multivariable logistic regression model, which accounts for the longitudinal binary process and continuous process simultaneously. Specifically, the longitudinal measurements for either binary or continuous variables are modeled by functional principal components analysis, and their corresponding functional principal component scores are used to build a logistic regression model for prediction. The longitudinal binary data are linked to underlying Gaussian processes. The estimation is done using penalized spline for the longitudinal continuous and binary data. Group-lasso is used to select longitudinal processes, and the multivariate functional principal components analysis is proposed to revise functional principal component scores with the correlation. The method is evaluated via comprehensive simulation studies and then applied to predict viral suppression using EHR data for people living with HIV in South Carolina.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300081","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300081","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by improving the prediction of the human immunodeficiency virus (HIV) suppression status using electronic health records (EHR) data, we propose a functional multivariable logistic regression model, which accounts for the longitudinal binary process and continuous process simultaneously. Specifically, the longitudinal measurements for either binary or continuous variables are modeled by functional principal components analysis, and their corresponding functional principal component scores are used to build a logistic regression model for prediction. The longitudinal binary data are linked to underlying Gaussian processes. The estimation is done using penalized spline for the longitudinal continuous and binary data. Group-lasso is used to select longitudinal processes, and the multivariate functional principal components analysis is proposed to revise functional principal component scores with the correlation. The method is evaluated via comprehensive simulation studies and then applied to predict viral suppression using EHR data for people living with HIV in South Carolina.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.