Gut microbiota metabolite tyramine ameliorates high-fat diet-induced insulin resistance via increased Ca2+ signaling.

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
EMBO Journal Pub Date : 2024-08-01 Epub Date: 2024-07-04 DOI:10.1038/s44318-024-00162-w
Peng Ma, Yao Zhang, Youjie Yin, Saifei Wang, Shuxin Chen, Xueping Liang, Zhifang Li, Hansong Deng
{"title":"Gut microbiota metabolite tyramine ameliorates high-fat diet-induced insulin resistance via increased Ca<sup>2+</sup> signaling.","authors":"Peng Ma, Yao Zhang, Youjie Yin, Saifei Wang, Shuxin Chen, Xueping Liang, Zhifang Li, Hansong Deng","doi":"10.1038/s44318-024-00162-w","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiota and their metabolites are closely linked to obesity-related diseases, such as type 2 diabetes, but their causal relationship and underlying mechanisms remain largely elusive. Here, we found that dysbiosis-induced tyramine (TA) suppresses high-fat diet (HFD)-mediated insulin resistance in both Drosophila and mice. In Drosophila, HFD increases cytosolic Ca<sup>2+</sup> signaling in enterocytes, which, in turn, suppresses intestinal lipid levels. 16 S rRNA sequencing and metabolomics revealed that HFD leads to increased prevalence of tyrosine decarboxylase (Tdc)-expressing bacteria and resulting tyramine production. Tyramine acts on the tyramine receptor, TyrR1, to promote cytosolic Ca<sup>2+</sup> signaling and activation of the CRTC-CREB complex to transcriptionally suppress dietary lipid digestion and lipogenesis in enterocytes, while promoting mitochondrial biogenesis. Furthermore, the tyramine-induced cytosolic Ca<sup>2+</sup> signaling is sufficient to suppress HFD-induced obesity and insulin resistance in Drosophila. In mice, tyramine intake also improves glucose tolerance and insulin sensitivity under HFD. These results indicate that dysbiosis-induced tyramine suppresses insulin resistance in both flies and mice under HFD, suggesting a potential therapeutic strategy for related metabolic disorders, such as diabetes.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329785/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00162-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The gut microbiota and their metabolites are closely linked to obesity-related diseases, such as type 2 diabetes, but their causal relationship and underlying mechanisms remain largely elusive. Here, we found that dysbiosis-induced tyramine (TA) suppresses high-fat diet (HFD)-mediated insulin resistance in both Drosophila and mice. In Drosophila, HFD increases cytosolic Ca2+ signaling in enterocytes, which, in turn, suppresses intestinal lipid levels. 16 S rRNA sequencing and metabolomics revealed that HFD leads to increased prevalence of tyrosine decarboxylase (Tdc)-expressing bacteria and resulting tyramine production. Tyramine acts on the tyramine receptor, TyrR1, to promote cytosolic Ca2+ signaling and activation of the CRTC-CREB complex to transcriptionally suppress dietary lipid digestion and lipogenesis in enterocytes, while promoting mitochondrial biogenesis. Furthermore, the tyramine-induced cytosolic Ca2+ signaling is sufficient to suppress HFD-induced obesity and insulin resistance in Drosophila. In mice, tyramine intake also improves glucose tolerance and insulin sensitivity under HFD. These results indicate that dysbiosis-induced tyramine suppresses insulin resistance in both flies and mice under HFD, suggesting a potential therapeutic strategy for related metabolic disorders, such as diabetes.

肠道微生物群代谢物酪胺通过增加 Ca2+ 信号传导改善高脂饮食引起的胰岛素抵抗。
肠道微生物群及其代谢产物与肥胖相关疾病(如 2 型糖尿病)密切相关,但其因果关系和内在机制在很大程度上仍然难以捉摸。在这里,我们发现菌群失调诱导的酪胺(TA)能抑制果蝇和小鼠体内高脂饮食(HFD)介导的胰岛素抵抗。在果蝇体内,HFD 增加了肠细胞的细胞膜 Ca2+ 信号传导,进而抑制了肠道脂质水平。16 S rRNA 测序和代谢组学研究发现,高频分解膳食会导致酪氨酸脱羧酶(Tdc)表达细菌的数量增加,进而产生酪胺。酪胺作用于酪胺受体 TyrR1,促进细胞膜 Ca2+ 信号传导和 CRTC-CREB 复合物的激活,从而转录抑制肠细胞的膳食脂质消化和脂肪生成,同时促进线粒体的生物生成。此外,酪胺诱导的细胞膜 Ca2+ 信号转导足以抑制果蝇因高密度脂蛋白诱导的肥胖和胰岛素抵抗。在小鼠中,摄入酪胺还能改善高氟日粮条件下的葡萄糖耐量和胰岛素敏感性。这些结果表明,菌群失调诱导的酪胺能抑制果蝇和小鼠在高频分解条件下的胰岛素抵抗,为相关的代谢紊乱(如糖尿病)提供了一种潜在的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EMBO Journal
EMBO Journal 生物-生化与分子生物学
CiteScore
18.90
自引率
0.90%
发文量
246
审稿时长
1.5 months
期刊介绍: The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance. With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信