Abdolreza Mosaddegh , Claudia Cobo Angel , Maya Craig , Kevin J. Cummings , Casey L. Cazer
{"title":"An exploration of descriptive machine learning approaches for antimicrobial resistance: Multidrug resistance patterns in Salmonella enterica","authors":"Abdolreza Mosaddegh , Claudia Cobo Angel , Maya Craig , Kevin J. Cummings , Casey L. Cazer","doi":"10.1016/j.prevetmed.2024.106261","DOIUrl":null,"url":null,"abstract":"<div><p>Salmonellosis is one of the most common foodborne diseases worldwide, with the ability to infect humans and animals. Antimicrobial resistance (AMR) and, particularly, multidrug resistance (MDR) among <em>Salmonella enterica</em> poses a risk to human health. Antimicrobial use (AMU) regulations in livestock have been implemented to reduce AMR and MDR in foodborne pathogens. In this study, we used an integrated machine learning approach to investigate <em>Salmonella</em> AMR and MDR patterns before and after the implementation of AMU restrictions in agriculture in the United States. For this purpose, <em>Salmonella</em> isolates from cattle in the National Antimicrobial Resistance Monitoring System (NARMS) dataset were analysed using three descriptive models consisting of hierarchical clustering, network analysis, and association rule mining. The analysis showed the impact of the United States’ 2012 extra-label cephalosporin regulations on AMR trends and revealed a distinctive MDR pattern in the Dublin serotype. The results also indicated that each descriptive model provides insights on a specific aspect of resistance patterns and, therefore, combining these approaches make it possible to gain a deeper understanding of AMR.</p></div>","PeriodicalId":20413,"journal":{"name":"Preventive veterinary medicine","volume":"230 ","pages":"Article 106261"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167587724001478/pdfft?md5=c0440490fe46283bb16860412b39c957&pid=1-s2.0-S0167587724001478-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preventive veterinary medicine","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167587724001478","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Salmonellosis is one of the most common foodborne diseases worldwide, with the ability to infect humans and animals. Antimicrobial resistance (AMR) and, particularly, multidrug resistance (MDR) among Salmonella enterica poses a risk to human health. Antimicrobial use (AMU) regulations in livestock have been implemented to reduce AMR and MDR in foodborne pathogens. In this study, we used an integrated machine learning approach to investigate Salmonella AMR and MDR patterns before and after the implementation of AMU restrictions in agriculture in the United States. For this purpose, Salmonella isolates from cattle in the National Antimicrobial Resistance Monitoring System (NARMS) dataset were analysed using three descriptive models consisting of hierarchical clustering, network analysis, and association rule mining. The analysis showed the impact of the United States’ 2012 extra-label cephalosporin regulations on AMR trends and revealed a distinctive MDR pattern in the Dublin serotype. The results also indicated that each descriptive model provides insights on a specific aspect of resistance patterns and, therefore, combining these approaches make it possible to gain a deeper understanding of AMR.
期刊介绍:
Preventive Veterinary Medicine is one of the leading international resources for scientific reports on animal health programs and preventive veterinary medicine. The journal follows the guidelines for standardizing and strengthening the reporting of biomedical research which are available from the CONSORT, MOOSE, PRISMA, REFLECT, STARD, and STROBE statements. The journal focuses on:
Epidemiology of health events relevant to domestic and wild animals;
Economic impacts of epidemic and endemic animal and zoonotic diseases;
Latest methods and approaches in veterinary epidemiology;
Disease and infection control or eradication measures;
The "One Health" concept and the relationships between veterinary medicine, human health, animal-production systems, and the environment;
Development of new techniques in surveillance systems and diagnosis;
Evaluation and control of diseases in animal populations.