Production optimization and antioxidant potential of exopolysaccharide produced by a moderately halophilic bacterium Virgibacillus dokdonensis VITP14.

IF 2 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Monic Andrew, Gurunathan Jayaraman
{"title":"Production optimization and antioxidant potential of exopolysaccharide produced by a moderately halophilic bacterium <i>Virgibacillus dokdonensis</i> VITP14.","authors":"Monic Andrew, Gurunathan Jayaraman","doi":"10.1080/10826068.2024.2370879","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to enhance the extracellular polymeric substances (EPS) production of <i>Virgibacillus dokdonensis</i> VITP14 and explore its antioxidant potential. EPS and biomass production by VITP14 strain were studied under different culture parameters and media compositions using one factor at a time method. Among different nutrient sources, glucose and peptone were identified as suitable carbon and nitrogen sources. Furthermore, the maximum EPS production was observed at 5% of inoculum size, 5 g/L of NaCl, and 96 h of fermentation. Response surface methodology was employed to augment EPS production and investigate the optimal levels of nutrient sources with their interaction. The strain was observed to produce actual maximum EPS of about 26.4 g/L for finalized optimum medium containing glucose 20 g/L, peptone 10 g/L, and NaCl 50 g/L while the predicted maximum EPS was 26.5 g/L. There was a nine fold increase in EPS production after optimization study. Additionally, EPS has exhibited significant scavenging, reducing, and chelating potential (>85%) at their higher concentration. This study imparts valuable insights into optimizing moderately halophilic bacterial EPS production and evaluating its natural antioxidant properties. According to findings, <i>V. dokdonensis</i> VITP14 was a promising isolate that will provide significant benefits to biopolymer producing industries.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-19"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2024.2370879","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to enhance the extracellular polymeric substances (EPS) production of Virgibacillus dokdonensis VITP14 and explore its antioxidant potential. EPS and biomass production by VITP14 strain were studied under different culture parameters and media compositions using one factor at a time method. Among different nutrient sources, glucose and peptone were identified as suitable carbon and nitrogen sources. Furthermore, the maximum EPS production was observed at 5% of inoculum size, 5 g/L of NaCl, and 96 h of fermentation. Response surface methodology was employed to augment EPS production and investigate the optimal levels of nutrient sources with their interaction. The strain was observed to produce actual maximum EPS of about 26.4 g/L for finalized optimum medium containing glucose 20 g/L, peptone 10 g/L, and NaCl 50 g/L while the predicted maximum EPS was 26.5 g/L. There was a nine fold increase in EPS production after optimization study. Additionally, EPS has exhibited significant scavenging, reducing, and chelating potential (>85%) at their higher concentration. This study imparts valuable insights into optimizing moderately halophilic bacterial EPS production and evaluating its natural antioxidant properties. According to findings, V. dokdonensis VITP14 was a promising isolate that will provide significant benefits to biopolymer producing industries.

一种中度嗜卤细菌 Virgibacillus dokdonensis VITP14 产生的外多糖的生产优化和抗氧化潜力。
本研究旨在提高多克冬变形杆菌 VITP14 的胞外聚合物质(EPS)产量,并探索其抗氧化潜力。研究采用一次一个因子的方法,研究了不同培养参数和培养基成分下 VITP14 菌株的 EPS 和生物量产量。在不同的营养源中,葡萄糖和蛋白胨被确定为合适的碳源和氮源。此外,在接种量为 5%、NaCl 为 5 克/升、发酵时间为 96 小时时,EPS 产量最大。采用响应面方法来提高 EPS 产量,并研究营养源与它们之间相互作用的最佳水平。在最终确定的最佳培养基(含葡萄糖 20 克/升、蛋白胨 10 克/升和氯化钠 50 克/升)中,观察到该菌株实际产生的最大 EPS 约为 26.4 克/升,而预测的最大 EPS 为 26.5 克/升。优化研究后,EPS 产量增加了 9 倍。此外,EPS 在较高浓度下具有显著的清除、还原和螯合潜力(>85%)。这项研究为优化中度嗜卤细菌的 EPS 产量和评估其天然抗氧化特性提供了宝贵的见解。研究结果表明,V. dokdonensis VITP14 是一种很有前途的分离物,将为生物聚合物生产行业带来巨大的利益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Preparative Biochemistry & Biotechnology
Preparative Biochemistry & Biotechnology 工程技术-生化研究方法
CiteScore
4.90
自引率
3.40%
发文量
98
审稿时长
2 months
期刊介绍: Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信