Recent advancements in microspheres mediated targeted delivery for therapeutic interventions in osteoarthritis.

IF 3 4区 医学 Q2 CHEMISTRY, APPLIED
Journal of microencapsulation Pub Date : 2024-09-01 Epub Date: 2024-07-05 DOI:10.1080/02652048.2024.2373723
Ayush Rohila, Rahul Shukla
{"title":"Recent advancements in microspheres mediated targeted delivery for therapeutic interventions in osteoarthritis.","authors":"Ayush Rohila, Rahul Shukla","doi":"10.1080/02652048.2024.2373723","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA), affecting around 240 million people globally is a major threat. Currently, available drugs only treat the symptoms of OA; they cannot reverse the disease's progression. The delivery of drugs to afflicted joints is challenging because of poor vasculature of articular cartilage results in their less bioavailability and quick elimination from the joints. Recently approved drugs such as KGN and IL-1 receptor antagonists also encounter challenges because of inadequate formulations. Therefore, microspheres could be a potential player for the intervention of OA owing to its excellent physicochemical properties. This review primarily focuses on microspheres of distinct biomaterials acting as cargo for drugs and biologicals via different delivery routes in the effective management of OA. Microspheres can improve the efficacy of therapeutics by targeting strategies at specific body locations. This review also highlights clinical trials conducted in the last few decades.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"434-455"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2024.2373723","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA), affecting around 240 million people globally is a major threat. Currently, available drugs only treat the symptoms of OA; they cannot reverse the disease's progression. The delivery of drugs to afflicted joints is challenging because of poor vasculature of articular cartilage results in their less bioavailability and quick elimination from the joints. Recently approved drugs such as KGN and IL-1 receptor antagonists also encounter challenges because of inadequate formulations. Therefore, microspheres could be a potential player for the intervention of OA owing to its excellent physicochemical properties. This review primarily focuses on microspheres of distinct biomaterials acting as cargo for drugs and biologicals via different delivery routes in the effective management of OA. Microspheres can improve the efficacy of therapeutics by targeting strategies at specific body locations. This review also highlights clinical trials conducted in the last few decades.

以微球为介质的骨关节炎靶向给药疗法的最新进展。
骨关节炎(OA)影响着全球约 2.4 亿人,是一个重大威胁。目前,现有的药物只能治疗 OA 的症状,无法逆转疾病的发展。由于关节软骨的血管功能较差,药物的生物利用度较低,且很快就会从关节中排出,因此将药物输送到患病关节具有挑战性。最近批准的药物(如 KGN 和 IL-1 受体拮抗剂)也因配方不当而面临挑战。因此,微球因其优异的理化特性,可能成为干预 OA 的潜在药物。本综述主要关注不同生物材料的微球作为药物和生物制剂的载体,通过不同的给药途径有效治疗 OA。微球可通过针对特定身体部位的靶向策略提高治疗效果。本综述还重点介绍了过去几十年中进行的临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of microencapsulation
Journal of microencapsulation 工程技术-工程:化工
CiteScore
6.30
自引率
2.60%
发文量
39
审稿时长
3 months
期刊介绍: The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation. The journal covers: Chemistry of encapsulation materials Physics of release through the capsule wall and/or desorption from carrier Techniques of preparation, content and storage Many uses to which microcapsules are put.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信