Comparative Linkage of Novel Anti-Tumor Pd(II) Complex with Bio-Macromulecules: Fluorescence, UV-Vis, DFT, Molecular Docking and Molecular Dynamics Simulation Studies.

IF 3.1 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Fluorescence Pub Date : 2025-06-01 Epub Date: 2024-07-05 DOI:10.1007/s10895-024-03820-8
Ashraf Sadat Dorafshan Tabatabai, Effat Dehghanian, Hassan Mansouri-Torshizi
{"title":"Comparative Linkage of Novel Anti-Tumor Pd(II) Complex with Bio-Macromulecules: Fluorescence, UV-Vis, DFT, Molecular Docking and Molecular Dynamics Simulation Studies.","authors":"Ashraf Sadat Dorafshan Tabatabai, Effat Dehghanian, Hassan Mansouri-Torshizi","doi":"10.1007/s10895-024-03820-8","DOIUrl":null,"url":null,"abstract":"<p><p>A novel mononuclear palladium complex, [Pd(dach)(SSA)], where dach and SSA are diaminocyclohexane and sulfosalicylic acid ligands, respectively, has been synthesized and identified utilizing analytical and spectral methods. DFT calculations, namely geometry optimization, MEP, HOMO-LUMO and NBO analysis, have been conducted at B3LYP level by aug-ccpVTZ-PP and 6-311G(d, p) basis sets. NBO and HOMO-LUMO analysis exhibited that the palladium compound is stable. MEP showed the potential sites of molecule for the interaction. By employing MTT assay, the cytotoxicity activity of the aforesaid compound was examined on K562 cell line, which revealed a proper activity compared to cisplatin. To ascertain the lipophilicity of the newly made compound, the partition coefficient measurement was accomplished, which follows the order of cisplatin < Pd(II) complex. Next, investigation of binding properties of the studied compound with DNA of calf thymus and BSA were done by spectroscopic (CD, fluorescence emission and electronic adsorption) and non-spectroscopic (viscosity measurements, DNA gel electrophoresis, molecular docking and molecular dynamics simulation) methods. The outcomes of CD and UV-Vis spectroscopy demonstrated that the title compound refolded the protein via increasing the alpha helix percentage. The data obtained from UV-Vis studies indicated the non-intercalative mutual action between Pd(II) complex with DNA. It also revealed that the K<sub>app</sub> magnitude of CT-DNA (7.43 × 10<sup>4</sup> M<sup>- 1</sup>) is higher than the BSA (5.17 × 10<sup>3</sup> M<sup>- 1</sup>), and L<sub>1/2</sub> (midpoint of transition) of CT-DNA (5 µM) is lower than the BSA (5.7 µM), indicating that the complex has a greater binding affinity to CT-DNA than BSA. Fluorescence quenching mechanism of the two biomolecules by the metal complex is static and the calculated thermodynamic parameters (ΔS° < 0 and ΔH° < 0) suggested the hydrogen bonding and/ or van der Waals forces with DNA and BSA. Further, molecular docking indicated that the studied compound fits into the groove of DNA and the site I of BSA. The stability of metal compound-DNA/-BSA in the presence of H<sub>2</sub>O solvent and over the time were validated via molecular dynamics simulation.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"4255-4276"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03820-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A novel mononuclear palladium complex, [Pd(dach)(SSA)], where dach and SSA are diaminocyclohexane and sulfosalicylic acid ligands, respectively, has been synthesized and identified utilizing analytical and spectral methods. DFT calculations, namely geometry optimization, MEP, HOMO-LUMO and NBO analysis, have been conducted at B3LYP level by aug-ccpVTZ-PP and 6-311G(d, p) basis sets. NBO and HOMO-LUMO analysis exhibited that the palladium compound is stable. MEP showed the potential sites of molecule for the interaction. By employing MTT assay, the cytotoxicity activity of the aforesaid compound was examined on K562 cell line, which revealed a proper activity compared to cisplatin. To ascertain the lipophilicity of the newly made compound, the partition coefficient measurement was accomplished, which follows the order of cisplatin < Pd(II) complex. Next, investigation of binding properties of the studied compound with DNA of calf thymus and BSA were done by spectroscopic (CD, fluorescence emission and electronic adsorption) and non-spectroscopic (viscosity measurements, DNA gel electrophoresis, molecular docking and molecular dynamics simulation) methods. The outcomes of CD and UV-Vis spectroscopy demonstrated that the title compound refolded the protein via increasing the alpha helix percentage. The data obtained from UV-Vis studies indicated the non-intercalative mutual action between Pd(II) complex with DNA. It also revealed that the Kapp magnitude of CT-DNA (7.43 × 104 M- 1) is higher than the BSA (5.17 × 103 M- 1), and L1/2 (midpoint of transition) of CT-DNA (5 µM) is lower than the BSA (5.7 µM), indicating that the complex has a greater binding affinity to CT-DNA than BSA. Fluorescence quenching mechanism of the two biomolecules by the metal complex is static and the calculated thermodynamic parameters (ΔS° < 0 and ΔH° < 0) suggested the hydrogen bonding and/ or van der Waals forces with DNA and BSA. Further, molecular docking indicated that the studied compound fits into the groove of DNA and the site I of BSA. The stability of metal compound-DNA/-BSA in the presence of H2O solvent and over the time were validated via molecular dynamics simulation.

Abstract Image

新型抗肿瘤钯(II)配合物与生物大分子的比较连接:荧光、紫外可见光、DFT、分子对接和分子动力学模拟研究。
利用分析和光谱方法合成并鉴定了一种新型单核钯配合物 [Pd(dach)(SSA)],其中 dach 和 SSA 分别为二氨基环己烷和磺基水杨酸配体。在 B3LYP 水平上,利用 aug-ccpVTZ-PP 和 6-311G(d, p) 基集进行了 DFT 计算,即几何优化、MEP、HOMO-LUMO 和 NBO 分析。NBO 和 HOMO-LUMO 分析表明,钯化合物是稳定的。MEP 显示了分子相互作用的潜在位点。通过 MTT 试验,研究了上述化合物对 K562 细胞株的细胞毒性活性,结果表明与顺铂相比,上述化合物具有适当的活性。为了确定新化合物的亲脂性,对其进行了分配系数测定,CT-DNA 的分配系数(7.43×104 M-1)高于 BSA 的分配系数(5.17×103 M-1),且 CT-DNA 的分配系数 L1/2(转变中点)(5 µM)低于 BSA 的分配系数(5.7 µM),表明该复合物与 CT-DNA 的结合亲和力大于 BSA。金属复合物对两种生物大分子的荧光淬灭机制是静态的,计算得出的热力学参数(ΔS° < 0 和 ΔH° < 0)表明,复合物与 DNA 和 BSA 之间存在氢键作用力和/或范德华力。此外,分子对接表明,所研究的化合物与 DNA 的沟槽和 BSA 的位点 I 相吻合。通过分子动力学模拟验证了金属化合物-DNA/-BSA 在 H2O 溶剂存在下的稳定性以及随着时间推移的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信