{"title":"Coptis rhizome extract influence on Streptococcus pneumoniae through autolysin activation.","authors":"Eon-Bee Lee, Kyubae Lee","doi":"10.1186/s13568-024-01736-x","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the antibacterial properties of Coptis rhizome, a plant traditionally used for respiratory infections, against Streptoccus pneumonia (S. pneumoniae), for which there has been minimal empirical evidence of effectiveness. The study particularly examined autolysis, indirectly associated with antibacterial resistance, when using Coptis rhizome for bacterial infections. In our methodology, Coptis rhizome was processed with ethanol and distilled water to produce four different extracts: CRET30, CRET50, CRET70, and CRDW. The antibacterial activity of these extracts were tested through Minimum Inhibitory Concentration (MIC) assays, disk diffusion tests, and time-kill assays, targeting both standard (ATCC 49619) and resistant (ATCC 70067) strains. The study also evaluated the extracts' biofilm inhibition properties and monitored the expression of the lyt gene, integral to autolysis. The results prominently showed that the CRET70 extract demonstrated remarkable antibacterial strength. It achieved an MIC of 0.125 µg/mL against both tested S. pneumoniae strains. The disk diffusion assay recorded inhibition zones of 22.17 mm for ATCC 49619 and 17.20 mm for ATCC 70067. Impressively, CRET70 resulted in a 2-log decrease in bacterial numbers for both strains, showcasing its potent bactericidal capacity. The extract was also effective in inhibiting 77.40% of biofilm formation. Additionally, the significant overexpression of the lytA gene in the presence of CRET70 pointed to a potential mechanism of action for its antibacterial effects. The outcomes provided new perspectives on the use of Coptis rhizome in combating S. pneumoniae, especially significant in an era of escalating antibiotic resistance.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"79"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01736-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the antibacterial properties of Coptis rhizome, a plant traditionally used for respiratory infections, against Streptoccus pneumonia (S. pneumoniae), for which there has been minimal empirical evidence of effectiveness. The study particularly examined autolysis, indirectly associated with antibacterial resistance, when using Coptis rhizome for bacterial infections. In our methodology, Coptis rhizome was processed with ethanol and distilled water to produce four different extracts: CRET30, CRET50, CRET70, and CRDW. The antibacterial activity of these extracts were tested through Minimum Inhibitory Concentration (MIC) assays, disk diffusion tests, and time-kill assays, targeting both standard (ATCC 49619) and resistant (ATCC 70067) strains. The study also evaluated the extracts' biofilm inhibition properties and monitored the expression of the lyt gene, integral to autolysis. The results prominently showed that the CRET70 extract demonstrated remarkable antibacterial strength. It achieved an MIC of 0.125 µg/mL against both tested S. pneumoniae strains. The disk diffusion assay recorded inhibition zones of 22.17 mm for ATCC 49619 and 17.20 mm for ATCC 70067. Impressively, CRET70 resulted in a 2-log decrease in bacterial numbers for both strains, showcasing its potent bactericidal capacity. The extract was also effective in inhibiting 77.40% of biofilm formation. Additionally, the significant overexpression of the lytA gene in the presence of CRET70 pointed to a potential mechanism of action for its antibacterial effects. The outcomes provided new perspectives on the use of Coptis rhizome in combating S. pneumoniae, especially significant in an era of escalating antibiotic resistance.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.