Surface Engineering Enhances Vanadium Carbide MXene-Based Nanoplatform Triggered by NIR-II for Cancer Theranostics.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-07-05 DOI:10.1002/smll.202401655
Xiaodong Zhu, Xide Zhang, Jiahao Guo, Lei He, Fuming Wang, Zhiwen Qiu, Ang Li, Jing Zhang, Fu Gao, Wei Li
{"title":"Surface Engineering Enhances Vanadium Carbide MXene-Based Nanoplatform Triggered by NIR-II for Cancer Theranostics.","authors":"Xiaodong Zhu, Xide Zhang, Jiahao Guo, Lei He, Fuming Wang, Zhiwen Qiu, Ang Li, Jing Zhang, Fu Gao, Wei Li","doi":"10.1002/smll.202401655","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the advantages of high tissue penetration depth, selectivity, and non-invasiveness of photothermal therapy for cancer treatment, developing NIR-II photothermal agents with desirable photothermal performance and advanced theranostics ability remains a key challenge. Herein, a universal surface modification strategy is proposed to effectively improve the photothermal performance of vanadium carbide MXene nanosheets (L-V<sub>2</sub>C) with the removal of surface impurity ions and generation of mesopores. Subsequently, MnO<sub>x</sub> coating capable of T1-weighted magnetic resonance imaging can be in situ formed through surface redox reaction on L-V<sub>2</sub>C, and then, stable nanoplatforms (LVM-PEG) under physiological conditions can be obtained after further PEGylation. In the tumor microenvironment irradiated by NIR-II laser, multivalent Mn ions released from LVM-PEG, as a reversible electronic station, can consume the overexpression of glutathione and catalyze a Fenton-like reaction to produce ·OH, resulting in synchronous cellular oxidative damage. Efficient synergistic therapy promotes immunogenic cell death, improving tumor-related immune microenvironment and immunomodulation, and thus, LVM-PEG can demonstrate high accuracy and excellent anticancer efficiency guided by multimodal imaging. As a result, this study provides a new approach for the customization of 2D surface strategies and the study of synergistic therapy mechanisms, highlighting the application of MXene-based materials in the biomedical field.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202401655","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the advantages of high tissue penetration depth, selectivity, and non-invasiveness of photothermal therapy for cancer treatment, developing NIR-II photothermal agents with desirable photothermal performance and advanced theranostics ability remains a key challenge. Herein, a universal surface modification strategy is proposed to effectively improve the photothermal performance of vanadium carbide MXene nanosheets (L-V2C) with the removal of surface impurity ions and generation of mesopores. Subsequently, MnOx coating capable of T1-weighted magnetic resonance imaging can be in situ formed through surface redox reaction on L-V2C, and then, stable nanoplatforms (LVM-PEG) under physiological conditions can be obtained after further PEGylation. In the tumor microenvironment irradiated by NIR-II laser, multivalent Mn ions released from LVM-PEG, as a reversible electronic station, can consume the overexpression of glutathione and catalyze a Fenton-like reaction to produce ·OH, resulting in synchronous cellular oxidative damage. Efficient synergistic therapy promotes immunogenic cell death, improving tumor-related immune microenvironment and immunomodulation, and thus, LVM-PEG can demonstrate high accuracy and excellent anticancer efficiency guided by multimodal imaging. As a result, this study provides a new approach for the customization of 2D surface strategies and the study of synergistic therapy mechanisms, highlighting the application of MXene-based materials in the biomedical field.

Abstract Image

表面工程增强了由近红外-II 触发的碳化钒 MXene 型纳米平台,可用于癌症治疗。
尽管光热疗法在癌症治疗中具有组织穿透深度高、选择性强和无创等优点,但开发具有理想光热性能和先进治疗能力的近红外-II光热制剂仍是一项关键挑战。本文提出了一种通用的表面改性策略,通过去除碳化钒 MXene 纳米片(L-V2C)表面杂质离子和生成介孔,有效提高其光热性能。随后,通过表面氧化还原反应在 L-V2C 上原位形成可进行 T1 加权磁共振成像的 MnOx 涂层,再经过 PEG 化处理,可获得生理条件下稳定的纳米平台(LVM-PEG)。在 NIR-II 激光照射下的肿瘤微环境中,LVM-PEG 释放的多价锰离子作为可逆电子站,可消耗过量表达的谷胱甘肽,并催化 Fenton 类反应产生 -OH,导致细胞同步氧化损伤。高效的协同治疗可促进免疫原性细胞死亡,改善肿瘤相关的免疫微环境和免疫调节,因此,LVM-PEG 可在多模态成像的指导下显示出高精度和卓越的抗癌效率。因此,本研究为二维表面策略的定制和协同治疗机制的研究提供了一种新方法,凸显了 MXene 基材料在生物医学领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信