{"title":"Impact of steroid biosynthesis on the aerobic adaptation of eukaryotes","authors":"Yosuke Hoshino, Eric A. Gaucher","doi":"10.1111/gbi.12612","DOIUrl":null,"url":null,"abstract":"<p>Steroids are indispensable components of the eukaryotic cellular membrane and the acquisition of steroid biosynthesis was a key factor that enabled the evolution of eukaryotes. The polycyclic carbon structures of steroids can be preserved in sedimentary rocks as chemical fossils for billions of years and thus provide invaluable clues to trace eukaryotic evolution from the distant past. Steroid biosynthesis consists of (1) the production of protosteroids and (2) the subsequent modifications toward “modern-type” steroids such as cholesterol and stigmasterol. While protosteroid biosynthesis requires only two genes for the cyclization of squalene, complete modification of protosteroids involves ~10 additional genes. Eukaryotes universally possess at least some of those additional genes and thus produce modern-type steroids as major final products. The geological biomarker records suggest a prolonged period of solely protosteroid production in the mid-Proterozoic before the advent of modern-type steroids in the Neoproterozoic. It has been proposed that mid-Proterozoic protosteroids were produced by hypothetical stem-group eukaryotes that presumably possessed genes only for protosteroid production, even though in modern environments protosteroid production as a final product is found exclusively in bacteria. The host identity of mid-Proterozoic steroid producers is crucial for understanding the early evolution of eukaryotes. In this perspective, we discuss how geological biomarker data and genetic data complement each other and potentially provide a more coherent scenario for the evolution of steroids and associated early eukaryotes. We further discuss the potential impacts that steroids had on the evolution of aerobic metabolism in eukaryotes, which may have been an important factor for the eventual ecological dominance of eukaryotes in many modern environments.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12612","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12612","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Steroids are indispensable components of the eukaryotic cellular membrane and the acquisition of steroid biosynthesis was a key factor that enabled the evolution of eukaryotes. The polycyclic carbon structures of steroids can be preserved in sedimentary rocks as chemical fossils for billions of years and thus provide invaluable clues to trace eukaryotic evolution from the distant past. Steroid biosynthesis consists of (1) the production of protosteroids and (2) the subsequent modifications toward “modern-type” steroids such as cholesterol and stigmasterol. While protosteroid biosynthesis requires only two genes for the cyclization of squalene, complete modification of protosteroids involves ~10 additional genes. Eukaryotes universally possess at least some of those additional genes and thus produce modern-type steroids as major final products. The geological biomarker records suggest a prolonged period of solely protosteroid production in the mid-Proterozoic before the advent of modern-type steroids in the Neoproterozoic. It has been proposed that mid-Proterozoic protosteroids were produced by hypothetical stem-group eukaryotes that presumably possessed genes only for protosteroid production, even though in modern environments protosteroid production as a final product is found exclusively in bacteria. The host identity of mid-Proterozoic steroid producers is crucial for understanding the early evolution of eukaryotes. In this perspective, we discuss how geological biomarker data and genetic data complement each other and potentially provide a more coherent scenario for the evolution of steroids and associated early eukaryotes. We further discuss the potential impacts that steroids had on the evolution of aerobic metabolism in eukaryotes, which may have been an important factor for the eventual ecological dominance of eukaryotes in many modern environments.
期刊介绍:
The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time.
Geobiology invites submission of high-quality articles in the following areas:
Origins and evolution of life
Co-evolution of the atmosphere, hydrosphere and biosphere
The sedimentary rock record and geobiology of critical intervals
Paleobiology and evolutionary ecology
Biogeochemistry and global elemental cycles
Microbe-mineral interactions
Biomarkers
Molecular ecology and phylogenetics.