Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications.

IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chemical Reviews Pub Date : 2024-11-13 Epub Date: 2024-07-05 DOI:10.1021/acs.chemrev.4c00155
Štĕpán Kment, Aristides Bakandritsos, Iosif Tantis, Hana Kmentová, Yunpeng Zuo, Olivier Henrotte, Alberto Naldoni, Michal Otyepka, Rajender S Varma, Radek Zbořil
{"title":"Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications.","authors":"Štĕpán Kment, Aristides Bakandritsos, Iosif Tantis, Hana Kmentová, Yunpeng Zuo, Olivier Henrotte, Alberto Naldoni, Michal Otyepka, Rajender S Varma, Radek Zbořil","doi":"10.1021/acs.chemrev.4c00155","DOIUrl":null,"url":null,"abstract":"<p><p>Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":"11767-11847"},"PeriodicalIF":51.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565580/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.chemrev.4c00155","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.

Abstract Image

基于地球富集金属的单原子催化剂在能源相关领域的应用。
与人口增长、经济发展、技术进步以及生活方式和气候模式变化相关的人类活动导致能源消耗持续增长。与此同时,在能源相关过程中经常用作催化剂的稀有金属元素不仅因其天然储量低而成本高昂,而且由于地缘政治原因,其可用性往往受到进一步限制。因此,以单原子催化剂(SACs)为主要形式的富土金属电化学能量存储和转换技术是高度相关且适时的技术。在本综述中,讨论了富集地球的单原子催化剂在电化学储能和电催化将化学品转化为燃料或高能量产品中的应用。此外,还评估了氧还原反应,该反应主要用于燃料电池技术和金属空气电池。针对双电子和四电子反应途径,分析了过渡金属 SAC 的配位、活性位点和机理。此外,还从氢进化反应和氧进化反应两个方面讨论了利用 SACs 进行电化学水分离以获得绿色氢燃料的问题。同样,还描绘了通过电催化氮还原反应生产氨作为清洁燃料的过程,凸显了富土单金属物种的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信