{"title":"Study of Surface Layer Characteristics in the Presence of Suspended Snow Particles Using Observational Data and Large Eddy Simulation","authors":"V. I. Suiazova, A. V. Debolskiy, E. V. Mortikov","doi":"10.1134/s000143382470021x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A snowdrift is a two-phase flow consisting of air and suspended particles. In the presence of snow particles in the air, additional stability appears in the surface layer due to the density gradient. The density gradient reduces turbulence and affects the properties of the surface layer. Therefore, to describe the properties of the flow with included snow particles, additional clarifications are required. A description of the surface layer parameterization with the presence of suspended snow particles is presented in this paper. The formulation of the effect of snow particles consists of the reformulation of the Obukhov turbulent length scale. The novel surface layer parameterization allows one to take into account the effect of snow particles on turbulent flow and may improve the estimates of friction velocity and boundary-layer height.The parameterization was successfully tested on the observational data. A description of snow particle influence has been included in the large eddy simulation (LES) model. The numerical experiments confirmed an increase in the stability of the surface layer. The mechanism of influence of suspended particles on the surface layer is analogous to a thermal stabilization of the turbulent flow, in which negative buoyancy acts to reduce the turbulent kinetic energy (TKE).</p>","PeriodicalId":54911,"journal":{"name":"Izvestiya Atmospheric and Oceanic Physics","volume":"11 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Atmospheric and Oceanic Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s000143382470021x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A snowdrift is a two-phase flow consisting of air and suspended particles. In the presence of snow particles in the air, additional stability appears in the surface layer due to the density gradient. The density gradient reduces turbulence and affects the properties of the surface layer. Therefore, to describe the properties of the flow with included snow particles, additional clarifications are required. A description of the surface layer parameterization with the presence of suspended snow particles is presented in this paper. The formulation of the effect of snow particles consists of the reformulation of the Obukhov turbulent length scale. The novel surface layer parameterization allows one to take into account the effect of snow particles on turbulent flow and may improve the estimates of friction velocity and boundary-layer height.The parameterization was successfully tested on the observational data. A description of snow particle influence has been included in the large eddy simulation (LES) model. The numerical experiments confirmed an increase in the stability of the surface layer. The mechanism of influence of suspended particles on the surface layer is analogous to a thermal stabilization of the turbulent flow, in which negative buoyancy acts to reduce the turbulent kinetic energy (TKE).
期刊介绍:
Izvestiya, Atmospheric and Oceanic Physics is a journal that publishes original scientific research and review articles on vital issues in the physics of the Earth’s atmosphere and hydrosphere and climate theory. The journal presents results of recent studies of physical processes in the atmosphere and ocean that control climate, weather, and their changes. These studies have possible practical applications. The journal also gives room to the discussion of results obtained in theoretical and experimental studies in various fields of oceanic and atmospheric physics, such as the dynamics of gas and water media, interaction of the atmosphere with the ocean and land surfaces, turbulence theory, heat balance and radiation processes, remote sensing and optics of both media, natural and man-induced climate changes, and the state of the atmosphere and ocean. The journal publishes papers on research techniques used in both media, current scientific information on domestic and foreign events in the physics of the atmosphere and ocean.