Electrochemical performance of gold electrode in aqueous solution, containing fullerenol-d (C60(OH)24): the possibility of direct detection of fullerenol-d in aqueous solutions
S. S. Ermakov, K. N. Semenov, D. V. Navolotskaya, O. V. Svetlova, A. Yu. Arbenin, A. A. Petrov
{"title":"Electrochemical performance of gold electrode in aqueous solution, containing fullerenol-d (C60(OH)24): the possibility of direct detection of fullerenol-d in aqueous solutions","authors":"S. S. Ermakov, K. N. Semenov, D. V. Navolotskaya, O. V. Svetlova, A. Yu. Arbenin, A. A. Petrov","doi":"10.1007/s10008-024-05991-7","DOIUrl":null,"url":null,"abstract":"<div><p>The electrochemical performance of gold electrode in sulfuric acid was studied with addition of different concentrations of dissolved fullerenol-d with C<sub>60</sub>(OH)<sub>24</sub> chemical formula. Based on the cyclic voltammetry data, the conclusion of surface complexation of Au(III) with fullerenol was made. The scheme was suggested to describe the electrode process, based on catalysis of anodic Au dissolution by fullerenol molecules. The technique was suggested to detect fullerenol-d (C<sub>60</sub>(OH)<sub>24</sub>) in concentration range from 2.6·10<sup>–9</sup> M to 2.0·10<sup>–7</sup> M by means of cyclic voltammetry of gold in aqueous sulfuric acid solution.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-05991-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The electrochemical performance of gold electrode in sulfuric acid was studied with addition of different concentrations of dissolved fullerenol-d with C60(OH)24 chemical formula. Based on the cyclic voltammetry data, the conclusion of surface complexation of Au(III) with fullerenol was made. The scheme was suggested to describe the electrode process, based on catalysis of anodic Au dissolution by fullerenol molecules. The technique was suggested to detect fullerenol-d (C60(OH)24) in concentration range from 2.6·10–9 M to 2.0·10–7 M by means of cyclic voltammetry of gold in aqueous sulfuric acid solution.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.