{"title":"Stochastic Optimization for Long-Term Planning of a Mining Complex with In-Pit Crushing and Conveying Systems","authors":"Liam Findlay, Roussos Dimitrakopoulos","doi":"10.1007/s42461-024-01005-2","DOIUrl":null,"url":null,"abstract":"<p>Semi-mobile in-pit crushing and conveying (IPCC) systems can help reduce truck haulage in open-pit mines by bringing the crusher closer to the excavation areas. Optimizing a production schedule with semi-mobile IPCC requires integrating extraction sequence, destination policy, crusher relocation, conveyor layout, and truck fleet investment decisions. A mining complex with multiple mines and IPCC systems should be optimized simultaneously to find an optimal schedule for the entire value chain. An integrated stochastic optimization framework is proposed to produce long-term production schedules for mining complexes using multiple semi-mobile IPCC systems. The optimization model has flexibility to select the crusher locations and conveyor routes from anywhere inside the pits. The framework uses simulated orebody realizations to consider multi-element grade uncertainty and manage associated risk. A hybrid metaheuristic solution approach based on simulated annealing and evolutionary algorithms is implemented. The method is demonstrated using an iron ore mining complex.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"34 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01005-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Semi-mobile in-pit crushing and conveying (IPCC) systems can help reduce truck haulage in open-pit mines by bringing the crusher closer to the excavation areas. Optimizing a production schedule with semi-mobile IPCC requires integrating extraction sequence, destination policy, crusher relocation, conveyor layout, and truck fleet investment decisions. A mining complex with multiple mines and IPCC systems should be optimized simultaneously to find an optimal schedule for the entire value chain. An integrated stochastic optimization framework is proposed to produce long-term production schedules for mining complexes using multiple semi-mobile IPCC systems. The optimization model has flexibility to select the crusher locations and conveyor routes from anywhere inside the pits. The framework uses simulated orebody realizations to consider multi-element grade uncertainty and manage associated risk. A hybrid metaheuristic solution approach based on simulated annealing and evolutionary algorithms is implemented. The method is demonstrated using an iron ore mining complex.
期刊介绍:
The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society.
The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.