Stochastic Optimization for Long-Term Planning of a Mining Complex with In-Pit Crushing and Conveying Systems

IF 1.5 4区 工程技术 Q3 METALLURGY & METALLURGICAL ENGINEERING
Liam Findlay, Roussos Dimitrakopoulos
{"title":"Stochastic Optimization for Long-Term Planning of a Mining Complex with In-Pit Crushing and Conveying Systems","authors":"Liam Findlay, Roussos Dimitrakopoulos","doi":"10.1007/s42461-024-01005-2","DOIUrl":null,"url":null,"abstract":"<p>Semi-mobile in-pit crushing and conveying (IPCC) systems can help reduce truck haulage in open-pit mines by bringing the crusher closer to the excavation areas. Optimizing a production schedule with semi-mobile IPCC requires integrating extraction sequence, destination policy, crusher relocation, conveyor layout, and truck fleet investment decisions. A mining complex with multiple mines and IPCC systems should be optimized simultaneously to find an optimal schedule for the entire value chain. An integrated stochastic optimization framework is proposed to produce long-term production schedules for mining complexes using multiple semi-mobile IPCC systems. The optimization model has flexibility to select the crusher locations and conveyor routes from anywhere inside the pits. The framework uses simulated orebody realizations to consider multi-element grade uncertainty and manage associated risk. A hybrid metaheuristic solution approach based on simulated annealing and evolutionary algorithms is implemented. The method is demonstrated using an iron ore mining complex.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"34 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01005-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Semi-mobile in-pit crushing and conveying (IPCC) systems can help reduce truck haulage in open-pit mines by bringing the crusher closer to the excavation areas. Optimizing a production schedule with semi-mobile IPCC requires integrating extraction sequence, destination policy, crusher relocation, conveyor layout, and truck fleet investment decisions. A mining complex with multiple mines and IPCC systems should be optimized simultaneously to find an optimal schedule for the entire value chain. An integrated stochastic optimization framework is proposed to produce long-term production schedules for mining complexes using multiple semi-mobile IPCC systems. The optimization model has flexibility to select the crusher locations and conveyor routes from anywhere inside the pits. The framework uses simulated orebody realizations to consider multi-element grade uncertainty and manage associated risk. A hybrid metaheuristic solution approach based on simulated annealing and evolutionary algorithms is implemented. The method is demonstrated using an iron ore mining complex.

Abstract Image

矿坑破碎和输送系统采矿综合体长期规划的随机优化
半移动式坑内破碎和输送(IPCC)系统可使破碎机更靠近挖掘区域,从而有助于减少露天矿的卡车运输量。利用半移动式坑内破碎和输送系统优化生产计划需要综合考虑开采顺序、目的地政策、破碎机搬迁、输送机布局和卡车车队投资决策。一个拥有多个矿山和 IPCC 系统的采矿综合体应同时进行优化,以找到整个价值链的最佳时间表。本文提出了一个综合随机优化框架,为使用多个半移动 IPCC 系统的采矿联合企业制定长期生产计划。该优化模型可以灵活地从矿坑内的任何位置选择破碎机位置和输送机路线。该框架使用模拟矿体实景来考虑多元素品位的不确定性并管理相关风险。基于模拟退火和进化算法的混合元启发式求解方法得以实现。该方法通过一个铁矿石开采综合体进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mining, Metallurgy & Exploration
Mining, Metallurgy & Exploration Materials Science-Materials Chemistry
CiteScore
3.50
自引率
10.50%
发文量
177
期刊介绍: The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society. The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信