{"title":"A generalisation of Läuchli's lemma","authors":"Nattapon Sonpanow, Pimpen Vejjajiva","doi":"10.1002/malq.202300031","DOIUrl":null,"url":null,"abstract":"<p>Läuchli showed in the absence of the Axiom of Choice (<span></span><math>\n <semantics>\n <mi>AC</mi>\n <annotation>$\\mathsf {AC}$</annotation>\n </semantics></math>) that <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mn>2</mn>\n <mrow>\n <mi>f</mi>\n <mi>i</mi>\n <mi>n</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <msub>\n <mi>ℵ</mi>\n <mn>0</mn>\n </msub>\n </msup>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <mrow>\n <mi>f</mi>\n <mi>i</mi>\n <mi>n</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$(2^{\\textup {fin}(\\mathfrak {m})})^{\\aleph _0} = 2^{\\textup {fin}(\\mathfrak {m})}$</annotation>\n </semantics></math> and, consequently, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n </msup>\n <mo>+</mo>\n <msup>\n <mn>2</mn>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n </msup>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n </msup>\n </mrow>\n <annotation>$2^{2^{\\mathfrak {m}}}+2^{2^{\\mathfrak {m}}} = 2^{2^{\\mathfrak {m}}}$</annotation>\n </semantics></math> for all infinite cardinals <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mi>i</mi>\n <mi>n</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\textup {fin}(\\mathfrak {m})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n <annotation>$2^{\\mathfrak {m}}$</annotation>\n </semantics></math> are the cardinalities of the set of finite subsets and the power set, respectively, of a set which is of cardinality <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>. In this article, we give a generalisation of a simple form of Läuchli's lemma from which several results can be obtained. That is, <span></span><math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n <annotation>$2^{\\mathfrak {m}}$</annotation>\n </semantics></math> in the latter equation can be replaced by other cardinals which are equal to <span></span><math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n <annotation>$2^{\\mathfrak {m}}$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mi>C</mi>\n </mrow>\n <annotation>$\\mathsf {ZF}{\\rm C}$</annotation>\n </semantics></math> but not in <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math>, for example, <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>!</mo>\n </mrow>\n <annotation>$\\mathfrak {m}!$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mi>a</mi>\n <mi>r</mi>\n <mi>t</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\textup {Part}(\\mathfrak {m})$</annotation>\n </semantics></math>, the cardinalities of the set of permutations and the set of partitions, respectively, of a set which is of cardinality <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 2","pages":"173-177"},"PeriodicalIF":0.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
Läuchli showed in the absence of the Axiom of Choice () that and, consequently, for all infinite cardinals , where and are the cardinalities of the set of finite subsets and the power set, respectively, of a set which is of cardinality . In this article, we give a generalisation of a simple form of Läuchli's lemma from which several results can be obtained. That is, in the latter equation can be replaced by other cardinals which are equal to in but not in , for example, and , the cardinalities of the set of permutations and the set of partitions, respectively, of a set which is of cardinality .
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.