A generalisation of Läuchli's lemma

Pub Date : 2024-07-02 DOI:10.1002/malq.202300031
Nattapon Sonpanow, Pimpen Vejjajiva
{"title":"A generalisation of Läuchli's lemma","authors":"Nattapon Sonpanow,&nbsp;Pimpen Vejjajiva","doi":"10.1002/malq.202300031","DOIUrl":null,"url":null,"abstract":"<p>Läuchli showed in the absence of the Axiom of Choice (<span></span><math>\n <semantics>\n <mi>AC</mi>\n <annotation>$\\mathsf {AC}$</annotation>\n </semantics></math>) that <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mn>2</mn>\n <mrow>\n <mi>f</mi>\n <mi>i</mi>\n <mi>n</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <msub>\n <mi>ℵ</mi>\n <mn>0</mn>\n </msub>\n </msup>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <mrow>\n <mi>f</mi>\n <mi>i</mi>\n <mi>n</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$(2^{\\textup {fin}(\\mathfrak {m})})^{\\aleph _0} = 2^{\\textup {fin}(\\mathfrak {m})}$</annotation>\n </semantics></math> and, consequently, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n </msup>\n <mo>+</mo>\n <msup>\n <mn>2</mn>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n </msup>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n </msup>\n </mrow>\n <annotation>$2^{2^{\\mathfrak {m}}}+2^{2^{\\mathfrak {m}}} = 2^{2^{\\mathfrak {m}}}$</annotation>\n </semantics></math> for all infinite cardinals <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mi>i</mi>\n <mi>n</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\textup {fin}(\\mathfrak {m})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n <annotation>$2^{\\mathfrak {m}}$</annotation>\n </semantics></math> are the cardinalities of the set of finite subsets and the power set, respectively, of a set which is of cardinality <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>. In this article, we give a generalisation of a simple form of Läuchli's lemma from which several results can be obtained. That is, <span></span><math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n <annotation>$2^{\\mathfrak {m}}$</annotation>\n </semantics></math> in the latter equation can be replaced by other cardinals which are equal to <span></span><math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n <annotation>$2^{\\mathfrak {m}}$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mi>C</mi>\n </mrow>\n <annotation>$\\mathsf {ZF}{\\rm C}$</annotation>\n </semantics></math> but not in <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math>, for example, <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>!</mo>\n </mrow>\n <annotation>$\\mathfrak {m}!$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mi>a</mi>\n <mi>r</mi>\n <mi>t</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\textup {Part}(\\mathfrak {m})$</annotation>\n </semantics></math>, the cardinalities of the set of permutations and the set of partitions, respectively, of a set which is of cardinality <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Läuchli showed in the absence of the Axiom of Choice ( AC $\mathsf {AC}$ ) that ( 2 f i n ( m ) ) 0 = 2 f i n ( m ) $(2^{\textup {fin}(\mathfrak {m})})^{\aleph _0} = 2^{\textup {fin}(\mathfrak {m})}$ and, consequently, 2 2 m + 2 2 m = 2 2 m $2^{2^{\mathfrak {m}}}+2^{2^{\mathfrak {m}}} = 2^{2^{\mathfrak {m}}}$ for all infinite cardinals m $\mathfrak {m}$ , where f i n ( m ) $\textup {fin}(\mathfrak {m})$ and 2 m $2^{\mathfrak {m}}$ are the cardinalities of the set of finite subsets and the power set, respectively, of a set which is of cardinality m $\mathfrak {m}$ . In this article, we give a generalisation of a simple form of Läuchli's lemma from which several results can be obtained. That is, 2 m $2^{\mathfrak {m}}$ in the latter equation can be replaced by other cardinals which are equal to 2 m $2^{\mathfrak {m}}$ in ZF C $\mathsf {ZF}{\rm C}$ but not in ZF $\mathsf {ZF}$ , for example, m ! $\mathfrak {m}!$ and P a r t ( m ) $\textup {Part}(\mathfrak {m})$ , the cardinalities of the set of permutations and the set of partitions, respectively, of a set which is of cardinality m $\mathfrak {m}$ .

分享
查看原文
拉乌奇里定理的一般化
在没有选择公理()的情况下,莱乌赫利证明了,因此,对于所有无限红心数,其中,和分别是有限子集的红心数和一个红心数为 的集合的幂集的红心数。在这篇文章中,我们给出了莱希里 Lemma 的一个简单形式的概括,从中可以得到一些结果。也就是说,在后一个等式中,可以用等于 in 而不等于 , 的其他红心数来代替,例如,和 , 分别是一个具有红心数的集合的置换集和分割集的红心数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信