Lie groups with all left-invariant semi-Riemannian metrics complete

IF 1.2 2区 数学 Q1 MATHEMATICS
Ahmed Elshafei, Ana Cristina Ferreira, Miguel Sánchez, Abdelghani Zeghib
{"title":"Lie groups with all left-invariant semi-Riemannian metrics complete","authors":"Ahmed Elshafei, Ana Cristina Ferreira, Miguel Sánchez, Abdelghani Zeghib","doi":"10.1090/tran/9160","DOIUrl":null,"url":null,"abstract":"<p>For each left-invariant semi-Riemannian metric <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\"application/x-tex\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on a Lie group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we introduce the class of bi-Lipschitz Riemannian <italic>Clairaut</italic> metrics, whose completeness implies the completeness of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\"application/x-tex\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. When the adjoint representation of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfies an at most linear growth bound, then all the Clairaut metrics are complete for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\"application/x-tex\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove that this bound is satisfied by compact and 2-step nilpotent groups, as well as by semidirect products <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K left-normal-factor-semidirect-product Subscript rho Baseline double-struck upper R Superscript n\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:msub> <mml:mo>⋉</mml:mo> <mml:mi>ρ</mml:mi> </mml:msub> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">K \\ltimes _\\rho \\mathbb {R}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> , where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the direct product of a compact and an abelian Lie group and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho left-parenthesis upper K right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>ρ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\rho (K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is pre-compact; they include all the known examples of Lie groups with all left-invariant metrics complete. The affine group of the real line is considered to illustrate how our techniques work even in the absence of linear growth and suggest new questions.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9160","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For each left-invariant semi-Riemannian metric g g on a Lie group G G , we introduce the class of bi-Lipschitz Riemannian Clairaut metrics, whose completeness implies the completeness of g g . When the adjoint representation of G G satisfies an at most linear growth bound, then all the Clairaut metrics are complete for any g g . We prove that this bound is satisfied by compact and 2-step nilpotent groups, as well as by semidirect products K ρ R n K \ltimes _\rho \mathbb {R}^n , where K K is the direct product of a compact and an abelian Lie group and ρ ( K ) \rho (K) is pre-compact; they include all the known examples of Lie groups with all left-invariant metrics complete. The affine group of the real line is considered to illustrate how our techniques work even in the absence of linear growth and suggest new questions.

具有所有左不变半黎曼度量的完整李群
对于李群 G G 上的每个左不变半黎曼度量 g g,我们引入了双唇奇兹黎曼克莱劳特度量类,其完备性意味着 g g 的完备性。当 G G 的邻接表示满足最多线性增长约束时,那么对于任意 g g,所有 Clairaut 度量都是完备的。我们证明紧凑群和两阶零potent 群,以及半直接积 K ⋉ ρ R n K \ltimes _\rho \mathbb {R}^n 都满足这个约束,其中 K K 是紧凑和无性李群的直接积,ρ ( K ) \rho (K) 是前紧凑;它们包括所有已知的具有完整左不变度量的李群的例子。我们考虑了实线的仿射群,以说明我们的技术如何在没有线性增长的情况下发挥作用,并提出了新的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信