Janelle A. Goeke, Thomas W. Boutton, Anna R. Armitage
{"title":"Foundation Species Shift Causes a Partial Loss of Functional Support for Benthic Coastal Consumers","authors":"Janelle A. Goeke, Thomas W. Boutton, Anna R. Armitage","doi":"10.1007/s12237-024-01389-w","DOIUrl":null,"url":null,"abstract":"<p>Foundation species support highly productive and valuable ecosystems, but anthropogenic disturbances and environmental changes are increasingly causing foundation species shifts, where one foundation species replaces another. The consequences of foundation shifts are not well understood, as there is limited research on the equivalency of different foundation species and the functions they support. Here, we provide insight into community-level consequences of foundation shifts in the Gulf of Mexico, where the typical marsh foundation species (<i>Spartina alterniflora</i>) is being replaced with a mangrove foundation species (<i>Avicennia germinans</i>), forcing marsh fauna to rely on <i>Avicennia</i> for foundational support. We evaluated the interactions of two common and ecologically valuable basal consumers, fiddler crabs (<i>Uca</i> spp.) and marsh periwinkle snails (<i>Littoraria irrorata</i>), with both foundation species across sites with different levels of mangrove encroachment. By investigating both physical support, measured as habitat association and co-occurrence, and trophic support, as basal resource diet contributions, we found that <i>Avicennia</i> can physically replace <i>Spartina</i> for some consumers, but is not providing equivalent trophic support. <i>Uca</i> and <i>Littoraria</i> commonly occupy encroached sites and associate with mangroves but incorporate almost no mangrove plant matter into their diets. The ultimate consequences of a foundation shift in the case of mangrove encroachment may include shifting energy flows and resource use and decreased populations of basal consumers. Looking at interactions with foundation species from multiple perspectives is necessary to obtain a complete picture of the effects that foundational shifts are having, especially as such shifts are becoming increasingly common.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"36 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuaries and Coasts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12237-024-01389-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Foundation species support highly productive and valuable ecosystems, but anthropogenic disturbances and environmental changes are increasingly causing foundation species shifts, where one foundation species replaces another. The consequences of foundation shifts are not well understood, as there is limited research on the equivalency of different foundation species and the functions they support. Here, we provide insight into community-level consequences of foundation shifts in the Gulf of Mexico, where the typical marsh foundation species (Spartina alterniflora) is being replaced with a mangrove foundation species (Avicennia germinans), forcing marsh fauna to rely on Avicennia for foundational support. We evaluated the interactions of two common and ecologically valuable basal consumers, fiddler crabs (Uca spp.) and marsh periwinkle snails (Littoraria irrorata), with both foundation species across sites with different levels of mangrove encroachment. By investigating both physical support, measured as habitat association and co-occurrence, and trophic support, as basal resource diet contributions, we found that Avicennia can physically replace Spartina for some consumers, but is not providing equivalent trophic support. Uca and Littoraria commonly occupy encroached sites and associate with mangroves but incorporate almost no mangrove plant matter into their diets. The ultimate consequences of a foundation shift in the case of mangrove encroachment may include shifting energy flows and resource use and decreased populations of basal consumers. Looking at interactions with foundation species from multiple perspectives is necessary to obtain a complete picture of the effects that foundational shifts are having, especially as such shifts are becoming increasingly common.
期刊介绍:
Estuaries and Coasts is the journal of the Coastal and Estuarine Research Federation (CERF). Begun in 1977 as Chesapeake Science, the journal has gradually expanded its scope and circulation. Today, the journal publishes scholarly manuscripts on estuarine and near coastal ecosystems at the interface between the land and the sea where there are tidal fluctuations or sea water is diluted by fresh water. The interface is broadly defined to include estuaries and nearshore coastal waters including lagoons, wetlands, tidal fresh water, shores and beaches, but not the continental shelf. The journal covers research on physical, chemical, geological or biological processes, as well as applications to management of estuaries and coasts. The journal publishes original research findings, reviews and perspectives, techniques, comments, and management applications. Estuaries and Coasts will consider properly carried out studies that present inconclusive findings or document a failed replication of previously published work. Submissions that are primarily descriptive, strongly place-based, or only report on development of models or new methods without detailing their applications fall outside the scope of the journal.