First-Principles Study on the Optoelectronic and Mechanical Properties of Lead-Free Semiconductor Silicon Perovskites ASiBr3 (A = K, Rb, Cs)

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Danish Abdullah and Dinesh C. Gupta
{"title":"First-Principles Study on the Optoelectronic and Mechanical Properties of Lead-Free Semiconductor Silicon Perovskites ASiBr3 (A = K, Rb, Cs)","authors":"Danish Abdullah and Dinesh C. Gupta","doi":"10.1149/2162-8777/ad57ef","DOIUrl":null,"url":null,"abstract":"We deployed density functional theory to assess the structural, electronic, elastic, and optical properties of ASiBr3 (A = K, Rb, and Cs). KSiBr3, RbSiBr3, and CsSiBr3 band structure profiles suggest they are semiconductors with direct band gaps of 0.34, 0.36, and 0.39 eV, respectively. The material’s dynamic stability is evidenced by the formation energies acquired negative values (−2.35, −2.18, and −2.08 for K, Rb, and Cs respectively). Mechanical characteristics and elastic constants measured suggest the compound’s mechanical stability and ductile character, which was assessed by calculating the Poissons ratio (>0.25) and Pugh’s ratio (>1.75). The research also explores optical properties, including the dielectric function, refractive index, reflectivity, optical conductivity, absorption coefficient, and extinction coefficient for the optical spectrum. The findings highlight possible applications for these materials in the semiconductor industry and modern electronic gadgets. The optical properties assessment reveals that these materials have strong optical absorption and conductivity, making these compounds the best prospects for usage in solar cells. CsSiBr3’s lower band gap renders it the superior choice for light-emitting diode (LED) and solar cell applications. Our findings may provide a complete understanding for experimentalists to pursue additional research leveraging applications in LEDs, photodetectors, or solar cells.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":"28 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad57ef","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We deployed density functional theory to assess the structural, electronic, elastic, and optical properties of ASiBr3 (A = K, Rb, and Cs). KSiBr3, RbSiBr3, and CsSiBr3 band structure profiles suggest they are semiconductors with direct band gaps of 0.34, 0.36, and 0.39 eV, respectively. The material’s dynamic stability is evidenced by the formation energies acquired negative values (−2.35, −2.18, and −2.08 for K, Rb, and Cs respectively). Mechanical characteristics and elastic constants measured suggest the compound’s mechanical stability and ductile character, which was assessed by calculating the Poissons ratio (>0.25) and Pugh’s ratio (>1.75). The research also explores optical properties, including the dielectric function, refractive index, reflectivity, optical conductivity, absorption coefficient, and extinction coefficient for the optical spectrum. The findings highlight possible applications for these materials in the semiconductor industry and modern electronic gadgets. The optical properties assessment reveals that these materials have strong optical absorption and conductivity, making these compounds the best prospects for usage in solar cells. CsSiBr3’s lower band gap renders it the superior choice for light-emitting diode (LED) and solar cell applications. Our findings may provide a complete understanding for experimentalists to pursue additional research leveraging applications in LEDs, photodetectors, or solar cells.
无铅半导体硅包晶 ASiBr3(A = K、Rb、Cs)光电和机械特性的第一性原理研究
我们运用密度泛函理论评估了 ASiBr3(A = K、Rb 和 Cs)的结构、电子、弹性和光学特性。KSiBr3、RbSiBr3 和 CsSiBr3 的带状结构曲线表明,它们是直接带隙分别为 0.34、0.36 和 0.39 eV 的半导体。材料的动态稳定性体现在形成能为负值(K、Rb 和 Cs 的形成能分别为-2.35、-2.18 和-2.08)。测得的机械特性和弹性常数表明该化合物具有机械稳定性和延展性,通过计算泊松比(大于 0.25)和普氏比(大于 1.75)对其进行了评估。研究还探讨了光学特性,包括介电函数、折射率、反射率、光导率、吸收系数和光谱消光系数。研究结果强调了这些材料在半导体工业和现代电子产品中的可能应用。光学特性评估显示,这些材料具有很强的光吸收和导电性,使这些化合物成为太阳能电池的最佳应用前景。CsSiBr3 的带隙较低,是发光二极管(LED)和太阳能电池应用的最佳选择。我们的发现可能会为实验人员提供一个全面的认识,从而开展更多的研究,利用发光二极管、光电探测器或太阳能电池中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ECS Journal of Solid State Science and Technology
ECS Journal of Solid State Science and Technology MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
4.50
自引率
13.60%
发文量
455
期刊介绍: The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices. JSS has five topical interest areas: carbon nanostructures and devices dielectric science and materials electronic materials and processing electronic and photonic devices and systems luminescence and display materials, devices and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信