Quantitative characterization of fatigue damage in plate structures based on FSOM

IF 3.7 3区 材料科学 Q1 INSTRUMENTS & INSTRUMENTATION
Chunbing Zhang, Xiaofeng Liu, Daiping Wei and Lin Bo
{"title":"Quantitative characterization of fatigue damage in plate structures based on FSOM","authors":"Chunbing Zhang, Xiaofeng Liu, Daiping Wei and Lin Bo","doi":"10.1088/1361-665x/ad5a58","DOIUrl":null,"url":null,"abstract":"For the problem of fatigue damage detection and damage degree assessment of plate structures, a quantitative damage assessment method based on the fast self-organizing feature mapping (FSOM) algorithm is proposed in this paper. The damage detection problem is transformed into a binary classification problem by extracting multidimensional damage features of the Lamb wave signal in plate to be detected and selecting damage sensitive features. Then, the FSOM network is used to identify the health state of the plate to be inspected, and the damage index is obtained by fusing the damage sensitive features using FSOM to quantitatively evaluate the damage level of the plate to be inspected. Simulation and experimental results show this method has a good dynamic tracking capability for the fatigue damage evolution of aluminum and composite plates, and can achieve quantitative assessment of fatigue damage of plate structures.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"36 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad5a58","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

For the problem of fatigue damage detection and damage degree assessment of plate structures, a quantitative damage assessment method based on the fast self-organizing feature mapping (FSOM) algorithm is proposed in this paper. The damage detection problem is transformed into a binary classification problem by extracting multidimensional damage features of the Lamb wave signal in plate to be detected and selecting damage sensitive features. Then, the FSOM network is used to identify the health state of the plate to be inspected, and the damage index is obtained by fusing the damage sensitive features using FSOM to quantitatively evaluate the damage level of the plate to be inspected. Simulation and experimental results show this method has a good dynamic tracking capability for the fatigue damage evolution of aluminum and composite plates, and can achieve quantitative assessment of fatigue damage of plate structures.
基于 FSOM 的板结构疲劳损伤定量表征
针对板结构的疲劳损伤检测和损伤程度评估问题,本文提出了一种基于快速自组织特征映射(FSOM)算法的定量损伤评估方法。通过提取待检测板材 Lamb 波信号的多维损伤特征并选择损伤敏感特征,将损伤检测问题转化为二元分类问题。然后,利用 FSOM 网络识别待检测板的健康状态,并利用 FSOM 融合损伤敏感特征得到损伤指数,从而定量评估待检测板的损伤程度。仿真和实验结果表明,该方法对铝板和复合板的疲劳损伤演化具有良好的动态跟踪能力,可实现对板结构疲劳损伤的定量评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Materials and Structures
Smart Materials and Structures 工程技术-材料科学:综合
CiteScore
7.50
自引率
12.20%
发文量
317
审稿时长
3 months
期刊介绍: Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures. A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信