A Scalable Quantum Gate-Based Implementation for Causal Hypothesis Testing

IF 4.4 Q1 OPTICS
Akash Kundu, Tamal Acharya, Aritra Sarkar
{"title":"A Scalable Quantum Gate-Based Implementation for Causal Hypothesis Testing","authors":"Akash Kundu,&nbsp;Tamal Acharya,&nbsp;Aritra Sarkar","doi":"10.1002/qute.202300326","DOIUrl":null,"url":null,"abstract":"<p>In this work, a scalable quantum gate-based algorithm for accelerating causal inference is introduced. Specifically, the formalism of causal hypothesis testing presented in [<i>Nat Commun</i> 10, 1472 (2019)] is considered. Through the algorithm, the existing definition of error probability is generalized, which is a metric to distinguish between two competing causal hypotheses, to a practical scenario. The results on the <span>Qiskit</span> validate the predicted speedup and show that in the realistic scenario, the error probability depends on the distance between the competing hypotheses. To achieve this, the causal hypotheses are embedded as a circuit construction of the oracle. Furthermore, by assessing the complexity involved in implementing the algorithm's subcomponents, a numerical estimation of the resources required for the algorithm is offered. Finally, applications of this framework for causal inference use cases in bioinformatics and artificial general intelligence are discussed.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202300326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a scalable quantum gate-based algorithm for accelerating causal inference is introduced. Specifically, the formalism of causal hypothesis testing presented in [Nat Commun 10, 1472 (2019)] is considered. Through the algorithm, the existing definition of error probability is generalized, which is a metric to distinguish between two competing causal hypotheses, to a practical scenario. The results on the Qiskit validate the predicted speedup and show that in the realistic scenario, the error probability depends on the distance between the competing hypotheses. To achieve this, the causal hypotheses are embedded as a circuit construction of the oracle. Furthermore, by assessing the complexity involved in implementing the algorithm's subcomponents, a numerical estimation of the resources required for the algorithm is offered. Finally, applications of this framework for causal inference use cases in bioinformatics and artificial general intelligence are discussed.

基于量子门的因果假设检验可扩展实现
在这项工作中,介绍了一种基于量子门的可扩展算法,用于加速因果推理。具体来说,考虑了[Nat Commun 10, 1472 (2019)]中提出的因果假设检验形式主义。通过该算法,现有的错误概率定义(即区分两个相互竞争的因果假设的指标)被推广到实际场景中。在 Qiskit 上的结果验证了预测的速度提升,并表明在现实场景中,错误概率取决于相互竞争的假设之间的距离。为此,因果假设被嵌入为甲骨文的电路结构。此外,通过评估实现算法子组件所涉及的复杂性,还提供了算法所需资源的数值估算。最后,讨论了这一框架在生物信息学和人工通用智能领域因果推理用例中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信