Effect of the Surface Functionality of Nanoglobular Carbon Altered by its Thermal Treatment on the Formation and Performance of the Pd/NGC Hydrogenation Catalyst
Roman M. Mironenko, Olga B. Belskaya, Evgeniya A. Raiskaya, Alexey B. Arbuzov, Olga A. Kokhanovskaya, Olga A. Knyazheva, Vyacheslav L. Yurpalov, Tatyana I. Gulyaeva, Mikhail V. Trenikhin, Vladimir A. Likholobov
{"title":"Effect of the Surface Functionality of Nanoglobular Carbon Altered by its Thermal Treatment on the Formation and Performance of the Pd/NGC Hydrogenation Catalyst","authors":"Roman M. Mironenko, Olga B. Belskaya, Evgeniya A. Raiskaya, Alexey B. Arbuzov, Olga A. Kokhanovskaya, Olga A. Knyazheva, Vyacheslav L. Yurpalov, Tatyana I. Gulyaeva, Mikhail V. Trenikhin, Vladimir A. Likholobov","doi":"10.1007/s10562-024-04758-z","DOIUrl":null,"url":null,"abstract":"<div><p>It was established that the surface functionality of nanoglobular carbon (NGC) can be effectively altered by treatment at temperatures of 573 – 1173 K in an inert atmosphere, without affecting the structure and morphology of the material as a whole. The destruction and loss of surface oxygen groups occurs as a result of this treatment, which is accompanied by a decrease in the concentration of paramagnetic centers. At a temperature of 1173 K, a restructuring and “smoothing” of the carbon surface apparently takes place, which is expressed by annealing of defects (sources of EPR signal). It was found that changes in the surface functionality of NGC affect the reducibility of supported palladium precursor and the formation of palladium nanoparticles, without causing changes in palladium dispersion state. The study of the obtained Pd/NGC catalysts in the practically important hydrogenation of 4-nitrobenzoic acid ethyl ester and furfural showed that thermal pre-treatment of the support affects the catalytic performance in these reactions. It is important that varying temperature of such pre-treatment over a fairly wide range, which has a significant impact on the functionality of the support surface, leads to only relatively small changes in the activity and selectivity of the resulting catalysts. In this regard, thermal pre-treatment of carbon support should be considered as an approach to fine tune the performance of carbon-supported palladium catalysts.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04758-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It was established that the surface functionality of nanoglobular carbon (NGC) can be effectively altered by treatment at temperatures of 573 – 1173 K in an inert atmosphere, without affecting the structure and morphology of the material as a whole. The destruction and loss of surface oxygen groups occurs as a result of this treatment, which is accompanied by a decrease in the concentration of paramagnetic centers. At a temperature of 1173 K, a restructuring and “smoothing” of the carbon surface apparently takes place, which is expressed by annealing of defects (sources of EPR signal). It was found that changes in the surface functionality of NGC affect the reducibility of supported palladium precursor and the formation of palladium nanoparticles, without causing changes in palladium dispersion state. The study of the obtained Pd/NGC catalysts in the practically important hydrogenation of 4-nitrobenzoic acid ethyl ester and furfural showed that thermal pre-treatment of the support affects the catalytic performance in these reactions. It is important that varying temperature of such pre-treatment over a fairly wide range, which has a significant impact on the functionality of the support surface, leads to only relatively small changes in the activity and selectivity of the resulting catalysts. In this regard, thermal pre-treatment of carbon support should be considered as an approach to fine tune the performance of carbon-supported palladium catalysts.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.