Larvicidal Efficacy of Green Synthesized Silver Nanoparticles on Aedes aegyptii and its Impact on Nontarget Daphnia magna

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Natasha Kudesia, A. Najitha Banu
{"title":"Larvicidal Efficacy of Green Synthesized Silver Nanoparticles on Aedes aegyptii and its Impact on Nontarget Daphnia magna","authors":"Natasha Kudesia, A. Najitha Banu","doi":"10.1007/s12088-024-01327-1","DOIUrl":null,"url":null,"abstract":"<p>The current study is based on the synthesis of silver nanoparticles using <i>Aspergillus fumigatus</i> and its larvicidal activity against <i>Aedes aegyptii.</i> The optical, morphological, structural, and elemental properties of synthesized silver nanoparticles were investigated by UV–Vis spectroscopy, Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Energy-dispersive X-ray analysis (EDX) and Zeta potential. The characterization was confirmed by the surface plasmon resonance band at 434 nm. The results validated the spherical shape and size (28–33 nm) of the nanoparticles. Biosynthesized silver nanoparticles (AgNPs) have been evaluated for their effectiveness in controlling <i>Aedes aegyptii</i> larvae. The larvicidal effect was evident in the experiment when <i>Aedes</i> larvae were exposed to five different log concentrations of <i>Aspergillus fumigatus</i> based-AgNPs. The mortality in the larvae had been observed at various exposure times. Exposure of third instar larvae of <i>Aedes aegypti</i> to biosynthesized silver nanoparticles resulted in lethal concentrations (LC<sub>50</sub> and LC<sub>90</sub>) of 2.624 and 4.728 ppm, respectively. Moreover, the biotoxicity screening against non-target organism <i>Daphnia magna</i> revealed the nontoxic nature of biogenic nanosilver against non-target fauna. The findings indicate that <i>Aspergillus fumigatus</i> has the potential to facilitate the swift synthesis of silver nanoparticles, presenting a novel approach for vector control strategies, without causing any harm to other aquatic organisms occupying the same ecological niche.</p>","PeriodicalId":13316,"journal":{"name":"Indian Journal of Microbiology","volume":"14 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12088-024-01327-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The current study is based on the synthesis of silver nanoparticles using Aspergillus fumigatus and its larvicidal activity against Aedes aegyptii. The optical, morphological, structural, and elemental properties of synthesized silver nanoparticles were investigated by UV–Vis spectroscopy, Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Energy-dispersive X-ray analysis (EDX) and Zeta potential. The characterization was confirmed by the surface plasmon resonance band at 434 nm. The results validated the spherical shape and size (28–33 nm) of the nanoparticles. Biosynthesized silver nanoparticles (AgNPs) have been evaluated for their effectiveness in controlling Aedes aegyptii larvae. The larvicidal effect was evident in the experiment when Aedes larvae were exposed to five different log concentrations of Aspergillus fumigatus based-AgNPs. The mortality in the larvae had been observed at various exposure times. Exposure of third instar larvae of Aedes aegypti to biosynthesized silver nanoparticles resulted in lethal concentrations (LC50 and LC90) of 2.624 and 4.728 ppm, respectively. Moreover, the biotoxicity screening against non-target organism Daphnia magna revealed the nontoxic nature of biogenic nanosilver against non-target fauna. The findings indicate that Aspergillus fumigatus has the potential to facilitate the swift synthesis of silver nanoparticles, presenting a novel approach for vector control strategies, without causing any harm to other aquatic organisms occupying the same ecological niche.

Abstract Image

绿色合成银纳米粒子对埃及伊蚊的杀幼虫功效及其对非目标水蚤的影响
目前的研究基于利用曲霉菌合成银纳米粒子及其对埃及伊蚊的杀幼虫活性。通过紫外可见光谱、扫描电子显微镜(SEM)、傅立叶变换红外光谱(FTIR)、X 射线衍射(XRD)、能量色散 X 射线分析(EDX)和 Zeta 电位研究了合成银纳米粒子的光学、形态、结构和元素特性。在 434 纳米波长处的表面等离子体共振波段证实了这些特征。结果验证了纳米粒子的球形形状和大小(28-33 nm)。对生物合成的银纳米粒子(AgNPs)控制埃及伊蚊幼虫的效果进行了评估。在实验中,当埃及伊蚊幼虫暴露于五种不同对数浓度的烟曲霉银纳米粒子时,杀幼虫效果明显。在不同的暴露时间,幼虫的死亡率都有不同。埃及伊蚊三龄幼虫暴露于生物合成的银纳米粒子后,致死浓度(LC50 和 LC90)分别为 2.624 ppm 和 4.728 ppm。此外,对非目标生物大型蚤的生物毒性筛选表明,生物纳米银对非目标动物无毒。研究结果表明,烟曲霉有潜力促进纳米银颗粒的快速合成,为病媒控制策略提供了一种新方法,同时不会对占据相同生态位的其他水生生物造成任何伤害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indian Journal of Microbiology
Indian Journal of Microbiology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
6.00
自引率
10.00%
发文量
51
审稿时长
1 months
期刊介绍: Indian Journal of Microbiology is the official organ of the Association of Microbiologists of India (AMI). It publishes full-length papers, short communication reviews and mini reviews on all aspects of microbiological research, published quarterly (March, June, September and December). Areas of special interest include agricultural, food, environmental, industrial, medical, pharmaceutical, veterinary and molecular microbiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信