Long Chen, Huixin Gao, Zhongpeng Wang, Bin Gu, Wanqi Zhou, Meijun Pang, Kuo Zhang, Xiuyun Liu, Dong Ming
{"title":"Vagus nerve electrical stimulation in the recovery of upper limb motor functional impairment after ischemic stroke","authors":"Long Chen, Huixin Gao, Zhongpeng Wang, Bin Gu, Wanqi Zhou, Meijun Pang, Kuo Zhang, Xiuyun Liu, Dong Ming","doi":"10.1007/s11571-024-10143-8","DOIUrl":null,"url":null,"abstract":"<p>Ischemic stroke (IS) is characterized by high mortality, disability rates, and a high risk of recurrence. Motor dysfunction, such as limb hemiparesis, dysphagia, auditory disorders, and speech disorders, usually persists after stroke, which imposes a heavy burden on society and the health care system. Traditional rehabilitation therapies may be ineffective in promoting functional recovery after stroke, and alternative strategies are urgently needed. The Food and Drug Administration (FDA) has approved invasive vagus nerve stimulation (iVNS) for the improvement of refractory epilepsy, treatment-resistant depression, obesity, and moderate to severe upper limb motor impairment following chronic ischemic stroke. Additionally, the FDA has approved transcutaneous vagus nerve stimulation (tVNS) for the improvement of cluster headaches and acute migraines. Recent studies have demonstrated that vagus nerve stimulation (VNS) has neuroprotective effects in both transient and permanent cerebral ischemia animal models, significantly improving upper limb motor impairments, auditory deficits, and swallowing difficulties. Firstly, this article reviews two potential neuronal death pathways following IS, including autophagy and inflammatory responses. Then delves into the current status of preclinical and clinical research on the functional recovery following IS with VNS, as well as the potential mechanisms mediating its neuroprotective effects. Finally, the optimal parameters and timing of VNS application are summarized, and the future challenges and directions of VNS in the treatment of IS are discussed. The application of VNS in stroke rehabilitation research has reached a critical stage, and determining how to safely and effectively translate this technology into clinical practice is of utmost importance. Further preclinical and clinical studies are needed to elucidate the therapeutic mechanisms of VNS.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10143-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemic stroke (IS) is characterized by high mortality, disability rates, and a high risk of recurrence. Motor dysfunction, such as limb hemiparesis, dysphagia, auditory disorders, and speech disorders, usually persists after stroke, which imposes a heavy burden on society and the health care system. Traditional rehabilitation therapies may be ineffective in promoting functional recovery after stroke, and alternative strategies are urgently needed. The Food and Drug Administration (FDA) has approved invasive vagus nerve stimulation (iVNS) for the improvement of refractory epilepsy, treatment-resistant depression, obesity, and moderate to severe upper limb motor impairment following chronic ischemic stroke. Additionally, the FDA has approved transcutaneous vagus nerve stimulation (tVNS) for the improvement of cluster headaches and acute migraines. Recent studies have demonstrated that vagus nerve stimulation (VNS) has neuroprotective effects in both transient and permanent cerebral ischemia animal models, significantly improving upper limb motor impairments, auditory deficits, and swallowing difficulties. Firstly, this article reviews two potential neuronal death pathways following IS, including autophagy and inflammatory responses. Then delves into the current status of preclinical and clinical research on the functional recovery following IS with VNS, as well as the potential mechanisms mediating its neuroprotective effects. Finally, the optimal parameters and timing of VNS application are summarized, and the future challenges and directions of VNS in the treatment of IS are discussed. The application of VNS in stroke rehabilitation research has reached a critical stage, and determining how to safely and effectively translate this technology into clinical practice is of utmost importance. Further preclinical and clinical studies are needed to elucidate the therapeutic mechanisms of VNS.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.