Recent progress in 2D inorganic non-conductive materials for alkali metal-based batteries

IF 3.2 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2024-06-26 DOI:10.1039/D4YA00209A
Yuxi Shen, Zengquan Zhu, Zhefeng Xu and Yueming Li
{"title":"Recent progress in 2D inorganic non-conductive materials for alkali metal-based batteries","authors":"Yuxi Shen, Zengquan Zhu, Zhefeng Xu and Yueming Li","doi":"10.1039/D4YA00209A","DOIUrl":null,"url":null,"abstract":"<p >The urgent need for new energy storage devices has promoted studies on alkaline metal-based batteries with high energy density and long life. In this case, two-dimensional (2D) inorganic non-conductive materials have exhibited unique physicochemical properties, making them ideal candidates for energy storage and conversion owing to their planar structure, high surface-to-volume ratio, and non-electronic conductive nature. Among the 2D inorganic non-conductive materials, hexagonal boron nitride (h-BN), graphitic nitride (g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>), montmorillonite (MMT), and vermiculite (VMT) have shown potential application in alkaline metal-based batteries. Herein, the strategies developed for the synthesis of these inorganic two-dimensional non-conductive materials in recent years and their applications as electrode material additives, metal anode supports, and building blocks of solid interfacial and separator additives in alkali metal-based batteries are comprehensively reviewed. Subsequently, challenges associated with the use of 2D materials in alkali metal-based batteries to improve their performance are discussed and possible solutions are proposed. These 2D inorganic non-conductive materials have potential to be widely used in alkali-based batteries in the future considering their unique structure and properties.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00209a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00209a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The urgent need for new energy storage devices has promoted studies on alkaline metal-based batteries with high energy density and long life. In this case, two-dimensional (2D) inorganic non-conductive materials have exhibited unique physicochemical properties, making them ideal candidates for energy storage and conversion owing to their planar structure, high surface-to-volume ratio, and non-electronic conductive nature. Among the 2D inorganic non-conductive materials, hexagonal boron nitride (h-BN), graphitic nitride (g-C3N4), montmorillonite (MMT), and vermiculite (VMT) have shown potential application in alkaline metal-based batteries. Herein, the strategies developed for the synthesis of these inorganic two-dimensional non-conductive materials in recent years and their applications as electrode material additives, metal anode supports, and building blocks of solid interfacial and separator additives in alkali metal-based batteries are comprehensively reviewed. Subsequently, challenges associated with the use of 2D materials in alkali metal-based batteries to improve their performance are discussed and possible solutions are proposed. These 2D inorganic non-conductive materials have potential to be widely used in alkali-based batteries in the future considering their unique structure and properties.

Abstract Image

用于碱金属基电池的二维无机非导电材料的最新进展
开发储能设备的迫切需要促进了对高能量密度和长寿命碱性金属电池的研究。二维(2D)无机非导电材料具有独特的物理化学特性,由于其平面结构、高表面体积比和非电子导电性,使其在能量存储和转换方面具有巨大潜力。在二维无机非导电材料中,六方氮化硼(h-BN)、氮化石墨(g-C3N4)、蒙脱石(MMT)和蛭石(VMT)在碱性金属电池中具有一定的应用潜力。在此,我们将回顾近年来这些无机二维非导电材料的合成策略,并讨论它们近年来在碱金属基电池中作为电极材料添加剂、金属阳极支撑物、固体界面构件和隔膜添加剂的应用。讨论了在碱金属基电池中使用二维材料以提高性能所面临的挑战,并提出了可能的解决方案。考虑到这些二维无机非导电材料的独特结构和性能,它们未来有可能在碱基电池中得到更广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信