Synergistic Enhancement of Supercapacitor Performance: Vanadium-Substituted Phosphotungstic and Molybdic Acid Combined with Polypyrrole Using Pyridinium and Ammonium Ionic Containing Organic Cation Linkers with Improved Conductivity
Muhammed Anees Puniyanikkottil, Pranay Rajendra Chandewar, Debaprasad Shee, Sib Sankar Mal
{"title":"Synergistic Enhancement of Supercapacitor Performance: Vanadium-Substituted Phosphotungstic and Molybdic Acid Combined with Polypyrrole Using Pyridinium and Ammonium Ionic Containing Organic Cation Linkers with Improved Conductivity","authors":"Muhammed Anees Puniyanikkottil, Pranay Rajendra Chandewar, Debaprasad Shee, Sib Sankar Mal","doi":"10.1002/ente.202400708","DOIUrl":null,"url":null,"abstract":"<p>High-performance energy-storage devices have emerged as a favored choice owing to their remarkable efficiency, sustainability, and environmental friendliness. Nowadays, polyoxometalate (POM)-based supercapacitor (SC) electrode materials have gained much attention. Herein, a few new POMs and ionic liquid (IL) composites incorporated into conducting polymer as electrode materials for SC applications are reported. The H<sub>6</sub>[PV<sub>3</sub>Mo<sub>9</sub>O<sub>40</sub>]⋅34H<sub>2</sub>O (PV<sub>3</sub>Mo<sub>9</sub>) and H<sub>6</sub>[PV<sub>3</sub>W<sub>9</sub>O<sub>40</sub>].34H<sub>2</sub>O (PV<sub>3</sub>W<sub>9</sub>) POMs are treated with tetrabutylammonium chloride and 1-butyl-4-methyl pyridinium chloride (BMP) and finally combined with polypyrrole (PPy) for the SC studies. An extensive array of analytical techniques is employed to delve into the interplay between the constituents within the composite materials, such as Fourier transform infrared spectroscopy, powder X-ray diffraction, thermogravimetric analysis, nuclear magnetic resonance (<sup>1</sup>H and <sup>13</sup>C), Field-emission scanning electron microscopy, energy-dispersive X-ray stpectroscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller surface area. The combined application of these techniques enables us to understand the interaction dynamics within composite materials comprehensively. POM–ILs combination improves the solubility issues of POMs, and doping of PPy enhances the electrochemical performances of the materials. The PV<sub>3</sub>W<sub>9</sub>–BMP–PPy symmetric SC cell shows a specific capacitance of 294.79 F g<sup>−1</sup> and an energy density of 28.89 Wh kg<sup>−1</sup> at 1 A g<sup>−1</sup> current density in 0.25 M H<sub>2</sub>SO<sub>4</sub> medium followed by an excellent cycle life of 78.6% after 10,000 galvanostatic charge–discharge cycles. The fabricated SC device is performed to light up the bulbs of red, yellow, and green light emitting diodes for 50, 30, and 28 s, respectively.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400708","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
High-performance energy-storage devices have emerged as a favored choice owing to their remarkable efficiency, sustainability, and environmental friendliness. Nowadays, polyoxometalate (POM)-based supercapacitor (SC) electrode materials have gained much attention. Herein, a few new POMs and ionic liquid (IL) composites incorporated into conducting polymer as electrode materials for SC applications are reported. The H6[PV3Mo9O40]⋅34H2O (PV3Mo9) and H6[PV3W9O40].34H2O (PV3W9) POMs are treated with tetrabutylammonium chloride and 1-butyl-4-methyl pyridinium chloride (BMP) and finally combined with polypyrrole (PPy) for the SC studies. An extensive array of analytical techniques is employed to delve into the interplay between the constituents within the composite materials, such as Fourier transform infrared spectroscopy, powder X-ray diffraction, thermogravimetric analysis, nuclear magnetic resonance (1H and 13C), Field-emission scanning electron microscopy, energy-dispersive X-ray stpectroscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller surface area. The combined application of these techniques enables us to understand the interaction dynamics within composite materials comprehensively. POM–ILs combination improves the solubility issues of POMs, and doping of PPy enhances the electrochemical performances of the materials. The PV3W9–BMP–PPy symmetric SC cell shows a specific capacitance of 294.79 F g−1 and an energy density of 28.89 Wh kg−1 at 1 A g−1 current density in 0.25 M H2SO4 medium followed by an excellent cycle life of 78.6% after 10,000 galvanostatic charge–discharge cycles. The fabricated SC device is performed to light up the bulbs of red, yellow, and green light emitting diodes for 50, 30, and 28 s, respectively.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.