{"title":"Reciprocity obstruction to strong approximation over p-adic function fields","authors":"Haowen Zhang","doi":"10.1016/j.jnt.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Over function fields of <em>p</em>-adic curves, we construct stably rational varieties in the form of homogeneous spaces of <span><math><msub><mrow><mi>SL</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with semisimple simply connected stabilizers and we show that strong approximation away from a non-empty set of places fails for such varieties. The construction combines the Lichtenbaum duality and the degree 3 cohomological invariants of the stabilizers. We then establish a reciprocity obstruction which accounts for this failure of strong approximation. We show that this reciprocity obstruction to strong approximation is the only one for counterexamples we constructed, and also for classifying varieties of tori. We also show that this reciprocity obstruction to strong approximation is compatible with known results for tori. At the end, we explain how a similar point of view shows that the reciprocity obstruction to weak approximation is the only one for classifying varieties of tori over <em>p</em>-adic function fields.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"264 ","pages":"Pages 99-134"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001331/pdfft?md5=cac87e78166d928ce995f053684adbf1&pid=1-s2.0-S0022314X24001331-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001331","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Over function fields of p-adic curves, we construct stably rational varieties in the form of homogeneous spaces of with semisimple simply connected stabilizers and we show that strong approximation away from a non-empty set of places fails for such varieties. The construction combines the Lichtenbaum duality and the degree 3 cohomological invariants of the stabilizers. We then establish a reciprocity obstruction which accounts for this failure of strong approximation. We show that this reciprocity obstruction to strong approximation is the only one for counterexamples we constructed, and also for classifying varieties of tori. We also show that this reciprocity obstruction to strong approximation is compatible with known results for tori. At the end, we explain how a similar point of view shows that the reciprocity obstruction to weak approximation is the only one for classifying varieties of tori over p-adic function fields.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.