Grand Besov–Bourgain–Morrey spaces and their applications to boundedness of operators

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yijin Zhang, Dachun Yang, Yirui Zhao
{"title":"Grand Besov–Bourgain–Morrey spaces and their applications to boundedness of operators","authors":"Yijin Zhang,&nbsp;Dachun Yang,&nbsp;Yirui Zhao","doi":"10.1007/s13324-024-00932-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(1&lt;q\\le p \\le r\\le \\infty \\)</span> and <span>\\(\\tau \\in (0,\\infty ]\\)</span>. Besov–Bourgain–Morrey spaces <span>\\({\\mathcal {M}}\\dot{B}^{p,\\tau }_{q,r}({\\mathbb {R}}^n)\\)</span> in the special case where <span>\\(\\tau =r\\)</span>, extending what was introduced by J. Bourgain, have proved useful in the study related to the Strichartz estimate and the non-linear Schrödinger equation. In this article, by cleverly mixing the norm structures of grand Lebesgue spaces and Besov–Bourgain–Morrey spaces and adding an extra exponent <span>\\(\\theta \\in [0,\\infty )\\)</span>, the authors introduce a new class of function spaces, called generalized grand Besov–Bourgain–Morrey spaces <span>\\({\\mathcal {M}}\\dot{B}^{p,\\tau }_{q),r,\\theta }({\\mathbb {R}}^n)\\)</span>. The authors explore their various real-variable properties including pre-dual spaces and the Gagliardo–Peetre and the ± interpolation theorems. Via establishing some equivalent quasi-norms of <span>\\({\\mathcal {M}}\\dot{B}^{p,\\tau }_{q),r,\\theta }({\\mathbb {R}}^n)\\)</span> related to Muckenhoupt <span>\\(A_1({\\mathbb {R}}^n)\\)</span>-weights, the authors then obtain an extrapolation theorem of <span>\\({\\mathcal {M}}\\dot{B}^{p,\\tau }_{q),r,\\theta }({\\mathbb {R}}^n)\\)</span>. Applying this extrapolation theorem, the Calderón product, and the sparse family of dyadic grids of <span>\\({\\mathbb {R}}^n\\)</span>, the authors establish the sharp boundedness on <span>\\({\\mathcal {M}}\\dot{B}^{p,\\tau }_{q),r,\\theta }({\\mathbb {R}}^n)\\)</span> of the Hardy–Littlewood maximal operator, the fractional integral, and the Calderón–Zygmund operator.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00932-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(1<q\le p \le r\le \infty \) and \(\tau \in (0,\infty ]\). Besov–Bourgain–Morrey spaces \({\mathcal {M}}\dot{B}^{p,\tau }_{q,r}({\mathbb {R}}^n)\) in the special case where \(\tau =r\), extending what was introduced by J. Bourgain, have proved useful in the study related to the Strichartz estimate and the non-linear Schrödinger equation. In this article, by cleverly mixing the norm structures of grand Lebesgue spaces and Besov–Bourgain–Morrey spaces and adding an extra exponent \(\theta \in [0,\infty )\), the authors introduce a new class of function spaces, called generalized grand Besov–Bourgain–Morrey spaces \({\mathcal {M}}\dot{B}^{p,\tau }_{q),r,\theta }({\mathbb {R}}^n)\). The authors explore their various real-variable properties including pre-dual spaces and the Gagliardo–Peetre and the ± interpolation theorems. Via establishing some equivalent quasi-norms of \({\mathcal {M}}\dot{B}^{p,\tau }_{q),r,\theta }({\mathbb {R}}^n)\) related to Muckenhoupt \(A_1({\mathbb {R}}^n)\)-weights, the authors then obtain an extrapolation theorem of \({\mathcal {M}}\dot{B}^{p,\tau }_{q),r,\theta }({\mathbb {R}}^n)\). Applying this extrapolation theorem, the Calderón product, and the sparse family of dyadic grids of \({\mathbb {R}}^n\), the authors establish the sharp boundedness on \({\mathcal {M}}\dot{B}^{p,\tau }_{q),r,\theta }({\mathbb {R}}^n)\) of the Hardy–Littlewood maximal operator, the fractional integral, and the Calderón–Zygmund operator.

大贝索夫-布尔干姆雷空间及其在算子有界性中的应用
Let\(1<qle p\le rle\le \infty \) and\(\tau \in (0,\infty ]\).Besov-Bourgain-Morrey空间({\mathcal {M}}\dot{B}^{p,\tau }_{q,r}({\mathbb {R}}^n)\ )在\(\tau =r\)的特殊情况下,扩展了J. Bourgain引入的内容,在与Strichartz估计和非线性薛定谔方程有关的研究中被证明是有用的。在这篇文章中,作者巧妙地混合了大勒贝格空间和贝索夫-布尔甘-莫雷空间的规范结构,并添加了一个额外的指数 \(\theta \in [0,\infty )\)、作者引入了一类新的函数空间,称为广义大贝索夫-布尔干姆雷空间({\mathcal {M}}\dot{B}^{p,\tau }_{q),r,\theta }({\mathbb {R}}^n)\).作者探讨了它们的各种实变性质,包括前二元空间、Gagliardo-Peetre 和 ± 插值定理。通过建立与 Muckenhoupt \(A_1({\mathbb {R}}^n)\weights 相关的 \({\mathcal {M}\dot{B}^{p,\tau }_{q),r,\theta }({\mathbb {R}}^n)\ 的一些等价准矩阵、作者随后得到了一个外推法定理({\mathcal {M}}\dot{B}^{p,\tau }_{q),r,\theta }({\mathbb {R}}^n)\ )。作者应用这一外推法定理、卡尔德龙积以及 \({\mathbb {R}}^n\) 的稀疏二元网格族,建立了 \({\mathcal {M}}\dot{B}^{p、\tau }_{q),r,\theta }({\mathbb{R}}^n)\)上的哈代-利特尔伍德最大算子、分数积分和卡尔德龙-齐格蒙算子的尖锐有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信