Rene Preuer, Carina Emminger, Umut Cakmak, Ingrid Graz
{"title":"Material Testing for Physicists: Unraveling the Dissipative Nature of Silicone Elastomers via Ball Drop Testing","authors":"Rene Preuer, Carina Emminger, Umut Cakmak, Ingrid Graz","doi":"10.1002/mame.202400085","DOIUrl":null,"url":null,"abstract":"<p>Isaac Newton once contemplated the fall of an apple, setting in motion a revolution in the understanding of gravity. In a similar spirit of curiosity and inquiry, here a journey is embarked upon to explore the intricate world of viscoelastic damping for polydimethylsiloxanes (PDMS). Inspired by the notion that even the simplest of phenomena can yield profound insights, a novel approach to study damping in silicone elastomers through a simple ball drop test is introduced. This novel solution allowes for precise measuring and analyzing the material's damping characteristics under various conditions. By carefully controlling the release and monitoring, the response of the falling ball by simple video tracking, valuable insights into the key viscoelastic properties of silicone blends are extracted, including rebound resilience, Young's modulus, and complex modulus. Through the analysis of trajectory data generated during the sphere's interaction with the silicone damper, dynamic and static material parameters are determined. Remarkably, these outcomes closely align with results obtained from cost-intensive and high-maintenance industrial measurement setups such as dynamic thermomechanical analysis (DTMA) or tensile testing. This approach not only simplifies the complexity of the system but also offers a cost-effective and efficient means of gaining essential knowledge in material science.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400085","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400085","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Isaac Newton once contemplated the fall of an apple, setting in motion a revolution in the understanding of gravity. In a similar spirit of curiosity and inquiry, here a journey is embarked upon to explore the intricate world of viscoelastic damping for polydimethylsiloxanes (PDMS). Inspired by the notion that even the simplest of phenomena can yield profound insights, a novel approach to study damping in silicone elastomers through a simple ball drop test is introduced. This novel solution allowes for precise measuring and analyzing the material's damping characteristics under various conditions. By carefully controlling the release and monitoring, the response of the falling ball by simple video tracking, valuable insights into the key viscoelastic properties of silicone blends are extracted, including rebound resilience, Young's modulus, and complex modulus. Through the analysis of trajectory data generated during the sphere's interaction with the silicone damper, dynamic and static material parameters are determined. Remarkably, these outcomes closely align with results obtained from cost-intensive and high-maintenance industrial measurement setups such as dynamic thermomechanical analysis (DTMA) or tensile testing. This approach not only simplifies the complexity of the system but also offers a cost-effective and efficient means of gaining essential knowledge in material science.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.