MPC-based cooperative multiagent search for multiple targets using a Bayesian framework

IF 4.2 2区 计算机科学 Q2 ROBOTICS
Hu Xiao, Rongxin Cui, Demin Xu, Yanran Li
{"title":"MPC-based cooperative multiagent search for multiple targets using a Bayesian framework","authors":"Hu Xiao,&nbsp;Rongxin Cui,&nbsp;Demin Xu,&nbsp;Yanran Li","doi":"10.1002/rob.22382","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a multiagent cooperative search algorithm for identifying an unknown number of targets. The objective is to determine a collection of observation points and corresponding safe paths for agents, which involves balancing the detection time and the number of targets searched. A Bayesian framework is used to update the local probability density function of the targets when the agents obtain information. We utilize model predictive control and establish utility functions based on the detection probability and decrease in information entropy. A target detection algorithm is implemented to verify the target based on minimum-risk Bayesian decision-making. Then, we improve the search algorithm with the target detection algorithm. Several simulations demonstrate that compared with other existing approaches, the proposed approach can reduce the time needed to detect targets and the number of targets searched. We establish an experimental platform with three unmanned aerial vehicles. The simulation and experimental results verify the satisfactory performance of our algorithm.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 8","pages":"2630-2649"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22382","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a multiagent cooperative search algorithm for identifying an unknown number of targets. The objective is to determine a collection of observation points and corresponding safe paths for agents, which involves balancing the detection time and the number of targets searched. A Bayesian framework is used to update the local probability density function of the targets when the agents obtain information. We utilize model predictive control and establish utility functions based on the detection probability and decrease in information entropy. A target detection algorithm is implemented to verify the target based on minimum-risk Bayesian decision-making. Then, we improve the search algorithm with the target detection algorithm. Several simulations demonstrate that compared with other existing approaches, the proposed approach can reduce the time needed to detect targets and the number of targets searched. We establish an experimental platform with three unmanned aerial vehicles. The simulation and experimental results verify the satisfactory performance of our algorithm.

利用贝叶斯框架,基于 MPC 的多目标多代理合作搜索
本文提出了一种多代理合作搜索算法,用于识别未知数量的目标。该算法的目标是为代理确定观测点集合和相应的安全路径,其中涉及探测时间和搜索目标数量之间的平衡。贝叶斯框架用于在代理获得信息时更新目标的局部概率密度函数。我们利用模型预测控制,并根据检测概率和信息熵的减少建立效用函数。基于最小风险贝叶斯决策,我们实施了一种目标检测算法来验证目标。然后,我们利用目标检测算法改进了搜索算法。一些模拟证明,与其他现有方法相比,所提出的方法可以减少检测目标所需的时间和搜索目标的数量。我们用三架无人飞行器建立了一个实验平台。仿真和实验结果验证了我们的算法性能令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信