Praveen Ailawalia, Priyanka, K. Lotfy, A. M. S. Mahdy
{"title":"Temperature-dependent thermal conductivity in Green–Naghdi (type III) thermoelastic half-space with hydrostatic initial stress","authors":"Praveen Ailawalia, Priyanka, K. Lotfy, A. M. S. Mahdy","doi":"10.1007/s11043-024-09720-5","DOIUrl":null,"url":null,"abstract":"<div><p>In present work, Green–Nagdhi (type III) thermoelastic half-space under hydrostatic initial stress is taken into consideration. The thermoelastic half-space is subjected to a mechanical load acting on the free surface along the normal direction. The thermal conductivity of the medium is believed to be temperature-dependent and to vary linearly. The formulas for the temperature distribution, stress, and displacement components are obtained by applying the normal mode analysis approach. Analytical evaluation is performed on the physical characteristics exhibiting temperature-dependent thermal conductivity. The influence of temperature dependency and hydrostatic starting stress on these physical parameters is then illustrated graphically by evaluating these physical values numerically using algorithms created in MATLAB 7.0.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1839 - 1852"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09720-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
In present work, Green–Nagdhi (type III) thermoelastic half-space under hydrostatic initial stress is taken into consideration. The thermoelastic half-space is subjected to a mechanical load acting on the free surface along the normal direction. The thermal conductivity of the medium is believed to be temperature-dependent and to vary linearly. The formulas for the temperature distribution, stress, and displacement components are obtained by applying the normal mode analysis approach. Analytical evaluation is performed on the physical characteristics exhibiting temperature-dependent thermal conductivity. The influence of temperature dependency and hydrostatic starting stress on these physical parameters is then illustrated graphically by evaluating these physical values numerically using algorithms created in MATLAB 7.0.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.