{"title":"Network energy use not directly proportional to data volume: The power model approach for more reliable network energy consumption calculations","authors":"David Mytton, Dag Lundén, Jens Malmodin","doi":"10.1111/jiec.13512","DOIUrl":null,"url":null,"abstract":"<p>It is commonly assumed that data volume and network energy consumption are directly proportional, a notion perpetuated by numerous studies and media coverage. This paper challenges this assumption, offering a comprehensive examination of network operations to explain why the relationship between energy consumption and data volume is nonlinear. The power model approach is explored as an alternative methodology for calculating network energy consumption providing a more reliable representation of network energy use. The power model demonstrates that simple energy intensity calculations, expressed as kilowatt hours per gigabyte of data, are insufficient for accurately estimating real-world network energy consumption.</p>","PeriodicalId":16050,"journal":{"name":"Journal of Industrial Ecology","volume":"28 4","pages":"966-980"},"PeriodicalIF":4.9000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jiec.13512","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jiec.13512","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is commonly assumed that data volume and network energy consumption are directly proportional, a notion perpetuated by numerous studies and media coverage. This paper challenges this assumption, offering a comprehensive examination of network operations to explain why the relationship between energy consumption and data volume is nonlinear. The power model approach is explored as an alternative methodology for calculating network energy consumption providing a more reliable representation of network energy use. The power model demonstrates that simple energy intensity calculations, expressed as kilowatt hours per gigabyte of data, are insufficient for accurately estimating real-world network energy consumption.
期刊介绍:
The Journal of Industrial Ecology addresses a series of related topics:
material and energy flows studies (''industrial metabolism'')
technological change
dematerialization and decarbonization
life cycle planning, design and assessment
design for the environment
extended producer responsibility (''product stewardship'')
eco-industrial parks (''industrial symbiosis'')
product-oriented environmental policy
eco-efficiency
Journal of Industrial Ecology is open to and encourages submissions that are interdisciplinary in approach. In addition to more formal academic papers, the journal seeks to provide a forum for continuing exchange of information and opinions through contributions from scholars, environmental managers, policymakers, advocates and others involved in environmental science, management and policy.