A Hilbert–Mumford criterion for polystability for actions of real reductive Lie groups

IF 1 3区 数学 Q1 MATHEMATICS
Leonardo Biliotti, Oluwagbenga Joshua Windare
{"title":"A Hilbert–Mumford criterion for polystability for actions of real reductive Lie groups","authors":"Leonardo Biliotti, Oluwagbenga Joshua Windare","doi":"10.1007/s10231-024-01480-w","DOIUrl":null,"url":null,"abstract":"<p>We study a Hilbert–Mumford criterion for polystablility associated with an action of a real reductive Lie group <i>G</i> on a real submanifold <i>X</i> of a Kähler manifold <i>Z</i>. Suppose the action of a compact Lie group with Lie algebra <span>\\(\\mathfrak {u}\\)</span> extends holomorphically to an action of the complexified group <span>\\(U^{\\mathbb {C}}\\)</span> and that the <i>U</i>-action on <i>Z</i> is Hamiltonian. If <span>\\(G\\subset U^{\\mathbb {C}}\\)</span> is compatible, there is a corresponding gradient map <span>\\(\\mu _\\mathfrak {p}: X\\rightarrow \\mathfrak {p}\\)</span>, where <span>\\(\\mathfrak {g}= \\mathfrak {k}\\oplus \\mathfrak {p}\\)</span> is a Cartan decomposition of the Lie algebra of <i>G</i>. Under some mild restrictions on the <i>G</i>-action on <i>X</i>, we characterize which <i>G</i>-orbits in <i>X</i> intersect <span>\\(\\mu _\\mathfrak {p}^{-1}(0)\\)</span> in terms of the maximal weight functions, which we viewed as a collection of maps defined on the boundary at infinity (<span>\\(\\partial _\\infty G/K\\)</span>) of the symmetric space <i>G</i>/<i>K</i>. We also establish the Hilbert–Mumford criterion for polystability of the action of <i>G</i> on measures.</p>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"26 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10231-024-01480-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a Hilbert–Mumford criterion for polystablility associated with an action of a real reductive Lie group G on a real submanifold X of a Kähler manifold Z. Suppose the action of a compact Lie group with Lie algebra \(\mathfrak {u}\) extends holomorphically to an action of the complexified group \(U^{\mathbb {C}}\) and that the U-action on Z is Hamiltonian. If \(G\subset U^{\mathbb {C}}\) is compatible, there is a corresponding gradient map \(\mu _\mathfrak {p}: X\rightarrow \mathfrak {p}\), where \(\mathfrak {g}= \mathfrak {k}\oplus \mathfrak {p}\) is a Cartan decomposition of the Lie algebra of G. Under some mild restrictions on the G-action on X, we characterize which G-orbits in X intersect \(\mu _\mathfrak {p}^{-1}(0)\) in terms of the maximal weight functions, which we viewed as a collection of maps defined on the boundary at infinity (\(\partial _\infty G/K\)) of the symmetric space G/K. We also establish the Hilbert–Mumford criterion for polystability of the action of G on measures.

实还原李群作用多稳性的希尔伯特-蒙福德准则
我们研究了一个与凯勒流形 Z 的实子流形 X 上的实还原性 Lie 群 G 作用相关的多稳态性的希尔伯特-芒福德判据。假设一个紧凑的 Lie 群的作用与 Lie 代数 \(\mathfrak {u}\) 整体扩展到复化群 \(U^{\mathbb {C}}\) 的作用,并且 Z 上的 U 作用是哈密顿的。如果 \(G 子集 U^{\mathbb {C}}\) 是相容的,那么就有一个相应的梯度映射 \(\mu _\mathfrak {p}: X\rightarrow \mathfrak {p}/),其中 \(\mathfrak {g}= \mathfrak {k}\oplus \mathfrak {p}/)是 G 的李代数的卡坦分解。在对 X 上的 G 作用的一些温和限制下,我们用最大权重函数描述了 X 中哪些 G 轨道与对称空间 G/K 的最大权重函数相交(\mu _\mathfrak {p}^{-1}(0)\) ),我们把这些最大权重函数看作是定义在对称空间 G/K 的无穷边界上的映射集合(\(\partial _\infty G/K/))。我们还建立了 G 对度量作用的多稳定性的希尔伯特-芒福德准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信