{"title":"Plasmon Dynamics in Electron‐Doped Graphene and AA‐ versus AB‐Stacked Bilayer Graphene","authors":"Chang‐Ting Liu, Chiun‐Yan Lin, Chih‐Wei Chiu","doi":"10.1002/pssb.202400222","DOIUrl":null,"url":null,"abstract":"This study investigates low‐frequency plasmons and single‐particle excitations (SPEs) in monolayer and bilayer graphene with various stacking configurations. The dynamics of wave propagation under different time‐dependent perturbation scenarios are elucidated using the random‐phase approximation dielectric function and tight‐binding Hamiltonian. The modulation of coherent excitations, particularly affecting plasmon waves, provides insights into the spatial and temporal dynamics on graphene sheets. A 2D acoustic plasmon mode is observed in monolayer graphene under extrinsic doping effects, while in bilayer graphene, it is accompanied by higher frequency optical plasmons. The predicted dynamic behavior, indicative of plasmon resonance, SPEs, and Landau damping with respect to stacking and doping effects, can be detected through ultrafast coherent dynamics observed via nanoimaging and nanospectroscopy techniques.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"10479 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400222","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates low‐frequency plasmons and single‐particle excitations (SPEs) in monolayer and bilayer graphene with various stacking configurations. The dynamics of wave propagation under different time‐dependent perturbation scenarios are elucidated using the random‐phase approximation dielectric function and tight‐binding Hamiltonian. The modulation of coherent excitations, particularly affecting plasmon waves, provides insights into the spatial and temporal dynamics on graphene sheets. A 2D acoustic plasmon mode is observed in monolayer graphene under extrinsic doping effects, while in bilayer graphene, it is accompanied by higher frequency optical plasmons. The predicted dynamic behavior, indicative of plasmon resonance, SPEs, and Landau damping with respect to stacking and doping effects, can be detected through ultrafast coherent dynamics observed via nanoimaging and nanospectroscopy techniques.
期刊介绍:
physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions.
physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.