Enhanced performance of carbon-based perovskite solar cells driven by N, N′-bis-(3-(3,5-di-tert-butyl-4 hydroxyphenyl) propionyl) hexanediamine

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Qingbo Wei , Yixuan Gao , Nannan Wang , Yingjia Zhuansun , Jiating Wang , Decai Zhu , Yao Huang , Qingxia Zhao , Lingxing Zan , Dong Yang
{"title":"Enhanced performance of carbon-based perovskite solar cells driven by N, N′-bis-(3-(3,5-di-tert-butyl-4 hydroxyphenyl) propionyl) hexanediamine","authors":"Qingbo Wei ,&nbsp;Yixuan Gao ,&nbsp;Nannan Wang ,&nbsp;Yingjia Zhuansun ,&nbsp;Jiating Wang ,&nbsp;Decai Zhu ,&nbsp;Yao Huang ,&nbsp;Qingxia Zhao ,&nbsp;Lingxing Zan ,&nbsp;Dong Yang","doi":"10.1016/j.solmat.2024.113005","DOIUrl":null,"url":null,"abstract":"<div><p>Chemical passivation is crucial to improving the stability and power conversion efficiency (PCE) of the perovskite solar cells (PSCs). In this section we use density functional theory to investigate the major defects of uncoordinated I<sup>−</sup> and Pb<sup>2+</sup> on the perovskite film surface. Meanwhile, an antioxidant material, <em>N, N′</em>-bis-(3-(3,5-di-tert-butyl-4 hydroxyphenyl) propionyl) hexanediamine (antioxidant 1098), is intended to passivate defects in perovskite films. Theoretical studies indicate that the antioxidant 1098 bound to I<sup>−</sup> and Pb<sup>2+</sup> on the perovskite film surface through Lewis base-acid interactions, which is enhanced by additional hydrogen bonds (H bonds) due to the antioxidant 1098. On the other hand, the passivation effect leads to a notable reduction in trap density and an extended charge lifetime on the perovskite films' surface. The main function of antioxidant 1098 is that the N atom provides lone electron pairs to combine with Pb atom, forming coordination bonds to improve the coordination ability of Pb<sup>2+</sup>, and reduce the defects of perovskite films. More importantly, the antioxidant 1098 can inhibit the oxidation reaction of perovskite and effectively improve the stability of perovskite devices. Lastly, the PCE of the champion device reaches 17.03 %, and the device that is not enclosed could maintain 96 % of its original efficiency after 1200 h under atmosphere conditions (RH = 30–40 %). This study offers a method for developing the air-processed stable carbon-based perovskite solar cells (C–PSCs) by chemical passivation.</p></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824003179","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical passivation is crucial to improving the stability and power conversion efficiency (PCE) of the perovskite solar cells (PSCs). In this section we use density functional theory to investigate the major defects of uncoordinated I and Pb2+ on the perovskite film surface. Meanwhile, an antioxidant material, N, N′-bis-(3-(3,5-di-tert-butyl-4 hydroxyphenyl) propionyl) hexanediamine (antioxidant 1098), is intended to passivate defects in perovskite films. Theoretical studies indicate that the antioxidant 1098 bound to I and Pb2+ on the perovskite film surface through Lewis base-acid interactions, which is enhanced by additional hydrogen bonds (H bonds) due to the antioxidant 1098. On the other hand, the passivation effect leads to a notable reduction in trap density and an extended charge lifetime on the perovskite films' surface. The main function of antioxidant 1098 is that the N atom provides lone electron pairs to combine with Pb atom, forming coordination bonds to improve the coordination ability of Pb2+, and reduce the defects of perovskite films. More importantly, the antioxidant 1098 can inhibit the oxidation reaction of perovskite and effectively improve the stability of perovskite devices. Lastly, the PCE of the champion device reaches 17.03 %, and the device that is not enclosed could maintain 96 % of its original efficiency after 1200 h under atmosphere conditions (RH = 30–40 %). This study offers a method for developing the air-processed stable carbon-based perovskite solar cells (C–PSCs) by chemical passivation.

N,N′-双(3-(3,5-二叔丁基-4-羟基苯基)丙基)己二胺驱动的碳基过氧化物太阳能电池性能的提高
化学钝化对于提高过氧化物太阳能电池(PSCs)的稳定性和功率转换效率(PCE)至关重要。在本节中,我们利用密度泛函理论研究了过氧化物薄膜表面未配位的 I 和 Pb 的主要缺陷。同时,一种抗氧化剂材料--双(3-(3,5-二叔丁基-4-羟基苯基)丙酰基)己二胺(抗氧化剂 1098)被用来钝化过氧化物薄膜中的缺陷。理论研究表明,抗氧化剂 1098 通过路易斯碱-酸相互作用与包晶薄膜表面的 I 和 Pb 结合,抗氧化剂 1098 产生的额外氢键(H 键)增强了这种结合。另一方面,钝化效应显著降低了陷阱密度,延长了包晶薄膜表面的电荷寿命。抗氧化剂 1098 的主要作用是 N 原子提供孤电子对与 Pb 原子结合,形成配位键,从而提高 Pb 的配位能力,减少过氧化物薄膜的缺陷。更重要的是,抗氧化剂 1098 能抑制包晶的氧化反应,有效提高包晶器件的稳定性。最后,冠军器件的 PCE 达到 17.03%,而未封闭的器件在大气条件下(相对湿度 = 30-40%)经过 1200 小时后仍能保持 96% 的原始效率。本研究提供了一种通过化学钝化开发空气处理的稳定碳基包晶石太阳能电池(C-PSCs)的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信