Injection Optimization at Particle Accelerators via Reinforcement Learning: From Simulation to Real-World Application

Awal AwalRWTH Aachen UniversityGSI Helmholtzzentrum für Schwerionenforschung GmbH, Jan HetzelGSI Helmholtzzentrum für Schwerionenforschung GmbH, Ralf GebelGSI Helmholtzzentrum für Schwerionenforschung GmbHForschungszentrum Jülich GmbH, Jörg PretzRWTH Aachen UniversityForschungszentrum Jülich GmbH
{"title":"Injection Optimization at Particle Accelerators via Reinforcement Learning: From Simulation to Real-World Application","authors":"Awal AwalRWTH Aachen UniversityGSI Helmholtzzentrum für Schwerionenforschung GmbH, Jan HetzelGSI Helmholtzzentrum für Schwerionenforschung GmbH, Ralf GebelGSI Helmholtzzentrum für Schwerionenforschung GmbHForschungszentrum Jülich GmbH, Jörg PretzRWTH Aachen UniversityForschungszentrum Jülich GmbH","doi":"arxiv-2406.12735","DOIUrl":null,"url":null,"abstract":"Optimizing the injection process in particle accelerators is crucial for\nenhancing beam quality and operational efficiency. This paper presents a\nframework for utilizing Reinforcement Learning (RL) to optimize the injection\nprocess at accelerator facilities. By framing the optimization challenge as an\nRL problem, we developed an agent capable of dynamically aligning the beam's\ntransverse space with desired targets. Our methodology leverages the Soft\nActor-Critic algorithm, enhanced with domain randomization and dense neural\nnetworks, to train the agent in simulated environments with varying dynamics\npromoting it to learn a generalized robust policy. The agent was evaluated in\nlive runs at the Cooler Synchrotron COSY and it has successfully optimized the\nbeam cross-section reaching human operator level but in notably less time. An\nempirical study further validated the importance of each architecture component\nin achieving a robust and generalized optimization strategy. The results\ndemonstrate the potential of RL in automating and improving optimization tasks\nat particle acceleration facilities.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.12735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizing the injection process in particle accelerators is crucial for enhancing beam quality and operational efficiency. This paper presents a framework for utilizing Reinforcement Learning (RL) to optimize the injection process at accelerator facilities. By framing the optimization challenge as an RL problem, we developed an agent capable of dynamically aligning the beam's transverse space with desired targets. Our methodology leverages the Soft Actor-Critic algorithm, enhanced with domain randomization and dense neural networks, to train the agent in simulated environments with varying dynamics promoting it to learn a generalized robust policy. The agent was evaluated in live runs at the Cooler Synchrotron COSY and it has successfully optimized the beam cross-section reaching human operator level but in notably less time. An empirical study further validated the importance of each architecture component in achieving a robust and generalized optimization strategy. The results demonstrate the potential of RL in automating and improving optimization tasks at particle acceleration facilities.
通过强化学习实现粒子加速器的喷射优化:从模拟到实际应用
优化粒子加速器的注入过程对于提高光束质量和运行效率至关重要。本文提出了一个利用强化学习(RL)优化加速器设备注入过程的框架。通过将优化挑战作为一个强化学习问题,我们开发了一个代理,它能够根据所需的目标动态调整光束的横向空间。我们的方法利用软代理批判算法(SoftActor-Critic algorithm),并通过域随机化和密集神经网络进行增强,在动态变化的模拟环境中训练代理,促进其学习通用的稳健策略。在冷却同步加速器 COSY 的实时运行中对该代理进行了评估,它成功地优化了光束截面,达到了人类操作员的水平,但耗时明显更短。实证研究进一步验证了每个架构组件在实现稳健和通用优化策略方面的重要性。这些结果证明了 RL 在自动化和改进粒子加速设施优化任务方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信