Melt-Processable and Electrospinnable Shape-Memory Hydrogels

IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Turdimuhammad Abdullah, Cagatay Altınkok, Oguz Okay
{"title":"Melt-Processable and Electrospinnable Shape-Memory Hydrogels","authors":"Turdimuhammad Abdullah,&nbsp;Cagatay Altınkok,&nbsp;Oguz Okay","doi":"10.1002/mame.202400166","DOIUrl":null,"url":null,"abstract":"<p>Due to their ability to adapt to subtle changes in response to various external and internal stimuli, smart hydrogels have become increasingly popular in research and industry. However, many currently available hydrogels suffer from poor processability and inferior mechanical properties. For example, the preparation of a hydrogel network that can be subjected to melt processing and electrospinning is challenging. Herein, a series of mechanically strong, shape-memory hydrogels based on polyacrylic acid (PAAc) chains containing 20–50 mol% of crystallizable n-octadecylacrylate (C18A) segments are prepared by an organosolv method followed by in situ physical cross-linking via hydrophobic interactions. The hydrogels exhibit a reversible strong to weak gel transition at 50–60 °C and can be melt-processed at 60–100 °C, depending on the molar fraction of C18A. Additionally, the hydrogels can be dissolved in chloroform/ethanol mixture to form a viscous solution, which can then be used to produce a nanofibrous network by electrospinning. Effects of polymer concentration, volume ratio of solvents, and mole fraction of C18A on electrospinning are investigated to produce smooth, uniform nanofibers with small fiber diameter. The produced nanofibers, while maintaining their chemical structure, show significantly improved water adsorption capacity, enhanced mechanical properties, and fast shape-memory performance.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 12","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400166","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400166","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to their ability to adapt to subtle changes in response to various external and internal stimuli, smart hydrogels have become increasingly popular in research and industry. However, many currently available hydrogels suffer from poor processability and inferior mechanical properties. For example, the preparation of a hydrogel network that can be subjected to melt processing and electrospinning is challenging. Herein, a series of mechanically strong, shape-memory hydrogels based on polyacrylic acid (PAAc) chains containing 20–50 mol% of crystallizable n-octadecylacrylate (C18A) segments are prepared by an organosolv method followed by in situ physical cross-linking via hydrophobic interactions. The hydrogels exhibit a reversible strong to weak gel transition at 50–60 °C and can be melt-processed at 60–100 °C, depending on the molar fraction of C18A. Additionally, the hydrogels can be dissolved in chloroform/ethanol mixture to form a viscous solution, which can then be used to produce a nanofibrous network by electrospinning. Effects of polymer concentration, volume ratio of solvents, and mole fraction of C18A on electrospinning are investigated to produce smooth, uniform nanofibers with small fiber diameter. The produced nanofibers, while maintaining their chemical structure, show significantly improved water adsorption capacity, enhanced mechanical properties, and fast shape-memory performance.

Abstract Image

可熔融加工和可电纺丝的形状记忆水凝胶
由于智能水凝胶能够适应各种外部和内部刺激的微妙变化,因此在研究和工业领域越来越受欢迎。然而,目前市面上的许多水凝胶都存在加工性能差、机械性能低等问题。例如,制备可进行熔融加工和电纺丝的水凝胶网络就具有挑战性。本文采用有机溶剂法制备了一系列机械强度高、形状记忆强的水凝胶,这些水凝胶基于聚丙烯酸(PAAc)链,其中含有 20-50 mol% 的可结晶正十八烷基丙烯酸酯(C18A)段,然后通过疏水作用进行原位物理交联。根据 C18A 的摩尔分数,水凝胶在 50-60 °C时会出现从强凝胶到弱凝胶的可逆转变,并可在 60-100 °C时进行熔融加工。此外,水凝胶还可以溶解在氯仿/乙醇混合物中形成粘稠溶液,然后通过电纺丝生成纳米纤维网络。研究了聚合物浓度、溶剂体积比和 C18A 摩尔分数对电纺丝的影响,以生产出光滑、均匀、纤维直径小的纳米纤维。制得的纳米纤维在保持其化学结构的同时,吸水能力显著提高,机械性能增强,并具有快速形状记忆性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信