Vanillin-Based Photocurable Anticorrosion Coatings Reinforced with Nanoclays

IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Camilla Noè, Leonardo Iannucci, Samuel Malburet, Alain Graillot, Sabrina Grassini
{"title":"Vanillin-Based Photocurable Anticorrosion Coatings Reinforced with Nanoclays","authors":"Camilla Noè,&nbsp;Leonardo Iannucci,&nbsp;Samuel Malburet,&nbsp;Alain Graillot,&nbsp;Sabrina Grassini","doi":"10.1002/mame.202400155","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the chemical–physical properties and anticorrosion effectiveness of UV-cured coatings produced using epoxidized vanillin (DGEVA) as biobased precursor, then reinforced by the addition of nanoclay. After optimizing the UV-curing parameters of three different formulations by Fourier transform infrared spectroscopy (FTIR), the thermo-mechanical properties of the coatings are assessed by differential scanning calorimetric analysis (DSC), dynamic thermal mechanical analysis (DTMA), and pencil hardness. The coatings are applied on mild steel substrates and then their barrier properties are investigated by electrochemical impedance spectroscopy measurements, immersing the samples in 3.5 wt% NaCl aerated solutions. The results show the good corrosion protective effectiveness of the biobased coatings. The nanoclay addition has a beneficial effect, as it hinders the diffusion of the aggressive ions from the electrolyte solution to the metal substrate. The reported findings demonstrate the possibility of using biobased precursors and UV-curing technology to reduce the environmental impact of the coating industry.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400155","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400155","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the chemical–physical properties and anticorrosion effectiveness of UV-cured coatings produced using epoxidized vanillin (DGEVA) as biobased precursor, then reinforced by the addition of nanoclay. After optimizing the UV-curing parameters of three different formulations by Fourier transform infrared spectroscopy (FTIR), the thermo-mechanical properties of the coatings are assessed by differential scanning calorimetric analysis (DSC), dynamic thermal mechanical analysis (DTMA), and pencil hardness. The coatings are applied on mild steel substrates and then their barrier properties are investigated by electrochemical impedance spectroscopy measurements, immersing the samples in 3.5 wt% NaCl aerated solutions. The results show the good corrosion protective effectiveness of the biobased coatings. The nanoclay addition has a beneficial effect, as it hinders the diffusion of the aggressive ions from the electrolyte solution to the metal substrate. The reported findings demonstrate the possibility of using biobased precursors and UV-curing technology to reduce the environmental impact of the coating industry.

用纳米粘土增强的香兰素光固化防腐涂料
本研究探讨了使用环氧化香兰素(DGEVA)作为生物基前驱体生产的紫外线固化涂料的化学物理性质和防腐效果,然后通过添加纳米粘土对其进行增强。通过傅立叶变换红外光谱(FTIR)优化了三种不同配方的紫外固化参数后,通过差示扫描量热分析(DSC)、动态热机械分析(DTMA)和铅笔硬度评估了涂层的热机械性能。将涂层涂覆在低碳钢基底上,然后将样品浸入 3.5 wt% 的氯化钠充气溶液中,通过电化学阻抗光谱测量研究其阻隔性能。结果表明,生物基涂层具有良好的腐蚀防护效果。纳米粘土的添加起到了有益的作用,因为它阻碍了侵蚀性离子从电解质溶液向金属基底的扩散。报告的研究结果表明,使用生物基前体和紫外线固化技术可以减少涂料工业对环境的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, and processing of advanced polymeric materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信