Controlling Structure and Morphology of MoS2 via Sulfur Precursor for Optimized Pseudocapacitive Lithium Intercalation Hosts

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Maciej Tobis, Mennatalla Elmanzalawy, Jaehoon Choi, Elżbieta Frąckowiak, Simon Fleischmann
{"title":"Controlling Structure and Morphology of MoS2 via Sulfur Precursor for Optimized Pseudocapacitive Lithium Intercalation Hosts","authors":"Maciej Tobis,&nbsp;Mennatalla Elmanzalawy,&nbsp;Jaehoon Choi,&nbsp;Elżbieta Frąckowiak,&nbsp;Simon Fleischmann","doi":"10.1002/batt.202400277","DOIUrl":null,"url":null,"abstract":"<p>Molybdenum disulfide (MoS<sub>2</sub>)-based electrode materials can exhibit a pseudocapacitive charge storage mechanism induced by nanosized dimension of the crystalline domains, which is why control over material structure via synthesis conditions is of significance. In this study, we investigate how the use of different sulfide precursors, specifically thiourea (TU), thioacetamide (TAA), and L-cysteine (LC), during the hydrothermal synthesis of MoS<sub>2</sub>, affects its physicochemical, and consequently, electrochemical properties. The three materials obtained exhibit distinct morphologies, ranging from micron-sized architectures (MoS<sub>2</sub> TU), to nanosized flakes (MoS<sub>2</sub> TAA and LC). While all three synthesized samples exhibit pseudocapacitive Li<sup>+</sup> intercalation properties, the capacity retention of the latter two consisting of nanosized flakes is further improved at high cycling rates. The individual charge storage properties are analyzed by operando X-ray diffraction, dilatometry, and 3D Bode analysis, revealing a correlation between the morphology, porosity, and the electrochemical intercalation behavior of the obtained electrode materials. The results demonstrate a facile strategy to control MoS<sub>2</sub> structure and related functionality by choice of hydrothermal synthesis precursors.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 11","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400277","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400277","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Molybdenum disulfide (MoS2)-based electrode materials can exhibit a pseudocapacitive charge storage mechanism induced by nanosized dimension of the crystalline domains, which is why control over material structure via synthesis conditions is of significance. In this study, we investigate how the use of different sulfide precursors, specifically thiourea (TU), thioacetamide (TAA), and L-cysteine (LC), during the hydrothermal synthesis of MoS2, affects its physicochemical, and consequently, electrochemical properties. The three materials obtained exhibit distinct morphologies, ranging from micron-sized architectures (MoS2 TU), to nanosized flakes (MoS2 TAA and LC). While all three synthesized samples exhibit pseudocapacitive Li+ intercalation properties, the capacity retention of the latter two consisting of nanosized flakes is further improved at high cycling rates. The individual charge storage properties are analyzed by operando X-ray diffraction, dilatometry, and 3D Bode analysis, revealing a correlation between the morphology, porosity, and the electrochemical intercalation behavior of the obtained electrode materials. The results demonstrate a facile strategy to control MoS2 structure and related functionality by choice of hydrothermal synthesis precursors.

Abstract Image

通过硫前驱体控制 MoS2 的结构和形态以优化伪电容性锂插层宿主
基于二硫化钼(MoS2)的电极材料可以在结晶畴纳米尺寸的诱导下表现出假电容性电荷存储机制,因此通过合成条件控制材料结构具有重要意义。在本研究中,我们研究了在水热合成 MoS2 的过程中使用不同的硫化物前驱体(特别是硫脲(TU)、硫代乙酰胺(TAA)和 L-半胱氨酸(LC))如何影响其物理化学性质,进而影响其电化学性质。获得的三种材料呈现出不同的形态,从微米级结构(MoS2 TU)到纳米级薄片(MoS2 TAA 和 LC)。虽然所有三种合成样品都表现出假电容性 Li+ 插层特性,但后两种由纳米级薄片组成的样品在高循环速率下的容量保持率得到了进一步提高。通过操作性 X 射线衍射、扩张测量和三维 Bode 分析,对各个电荷存储特性进行了分析,揭示了所获电极材料的形态、孔隙率和电化学插层行为之间的相关性。研究结果证明了一种通过选择水热合成前体来控制 MoS2 结构和相关功能的简便策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信