Secure and fast asynchronous Vertical Federated Learning via cascaded hybrid optimization

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ganyu Wang, Qingsong Zhang, Xiang Li, Boyu Wang, Bin Gu, Charles X. Ling
{"title":"Secure and fast asynchronous Vertical Federated Learning via cascaded hybrid optimization","authors":"Ganyu Wang, Qingsong Zhang, Xiang Li, Boyu Wang, Bin Gu, Charles X. Ling","doi":"10.1007/s10994-024-06541-y","DOIUrl":null,"url":null,"abstract":"<p>Vertical Federated Learning (VFL) is gaining increasing attention due to its ability to enable multiple parties to collaboratively train a privacy-preserving model using vertically partitioned data. Recent research has highlighted the advantages of using zeroth-order optimization (ZOO) in developing practical VFL algorithms. However, a significant drawback of ZOO-based VFL is its slow convergence rate, which limits its applicability in handling large modern models. To address this issue, we propose a cascaded hybrid optimization method for VFL. In this method, the downstream models (clients) are trained using ZOO to ensure privacy and prevent the sharing of internal information. Simultaneously, the upstream model (server) is updated locally using first-order optimization, which significantly improves the convergence rate. This approach allows for the training of large models without compromising privacy and security. We theoretically prove that our VFL method achieves faster convergence compared to ZOO-based VFL because the convergence rate of our framework is not limited by the size of the server model, making it effective for training large models. Extensive experiments demonstrate that our method achieves faster convergence than ZOO-based VFL while maintaining an equivalent level of privacy protection. Additionally, we demonstrate the feasibility of training large models using our method.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06541-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Vertical Federated Learning (VFL) is gaining increasing attention due to its ability to enable multiple parties to collaboratively train a privacy-preserving model using vertically partitioned data. Recent research has highlighted the advantages of using zeroth-order optimization (ZOO) in developing practical VFL algorithms. However, a significant drawback of ZOO-based VFL is its slow convergence rate, which limits its applicability in handling large modern models. To address this issue, we propose a cascaded hybrid optimization method for VFL. In this method, the downstream models (clients) are trained using ZOO to ensure privacy and prevent the sharing of internal information. Simultaneously, the upstream model (server) is updated locally using first-order optimization, which significantly improves the convergence rate. This approach allows for the training of large models without compromising privacy and security. We theoretically prove that our VFL method achieves faster convergence compared to ZOO-based VFL because the convergence rate of our framework is not limited by the size of the server model, making it effective for training large models. Extensive experiments demonstrate that our method achieves faster convergence than ZOO-based VFL while maintaining an equivalent level of privacy protection. Additionally, we demonstrate the feasibility of training large models using our method.

Abstract Image

通过级联混合优化实现安全快速的异步垂直联合学习
垂直联合学习(Vertical Federated Learning,VFL)能够让多方利用垂直分割的数据协作训练一个保护隐私的模型,因此越来越受到关注。最近的研究凸显了使用零阶优化(ZOO)开发实用 VFL 算法的优势。然而,基于 ZOO 的 VFL 的一个显著缺点是收敛速度慢,这限制了它在处理大型现代模型时的适用性。为了解决这个问题,我们提出了一种级联混合优化 VFL 方法。在这种方法中,下游模型(客户端)使用 ZOO 进行训练,以确保隐私并防止内部信息共享。同时,上游模型(服务器)使用一阶优化进行本地更新,从而显著提高收敛速度。这种方法可以在不影响隐私和安全的情况下训练大型模型。我们从理论上证明,与基于 ZOO 的 VFL 相比,我们的 VFL 方法能实现更快的收敛速度,因为我们框架的收敛速度不受服务器模型大小的限制,使其能有效地训练大型模型。大量实验证明,我们的方法比基于 ZOO 的 VFL 收敛速度更快,同时保持了同等水平的隐私保护。此外,我们还证明了使用我们的方法训练大型模型的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine Learning
Machine Learning 工程技术-计算机:人工智能
CiteScore
11.00
自引率
2.70%
发文量
162
审稿时长
3 months
期刊介绍: Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信