Heteroatom-Doped Graphitic Carbon Nitrides for Reducing the Fire Hazard of Polystyrene

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chao Li, Juncheng Jiang*, Lanjuan Xu, Lei Ni and Xinlei Jia, 
{"title":"Heteroatom-Doped Graphitic Carbon Nitrides for Reducing the Fire Hazard of Polystyrene","authors":"Chao Li,&nbsp;Juncheng Jiang*,&nbsp;Lanjuan Xu,&nbsp;Lei Ni and Xinlei Jia,&nbsp;","doi":"10.1021/acsanm.4c00862","DOIUrl":null,"url":null,"abstract":"<p >High fire hazard, including heat release and toxic volatile production, has been the bottleneck in expanding the application of polystyrene (PS). Here, a heteroatom doping strategy is adopted to strengthen the flame-retardant effect of graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) on PS. It is observed that the doped g-C<sub>3</sub>N<sub>4</sub> fillers (PCN-1, PCN-2, PCN-3, BCN-1, BCN-2, BCN-3, PBCN-1, PBCN-2, and PBCN-3) show nanosheet-like morphologies, while common g-C<sub>3</sub>N<sub>4</sub> presents bulky morphology. Also, the doped g-C<sub>3</sub>N<sub>4</sub> fillers show higher thermal stability than common g-C<sub>3</sub>N<sub>4</sub>. Consequently, the doped g-C<sub>3</sub>N<sub>4</sub> fillers show a better dispersion state in the PS matrix, benefiting the generation of an efficient barrier network. Cone results reveal that using the doped g-C<sub>3</sub>N<sub>4</sub> fillers endows the polymer with a lower peak heat release rate, a peak smoke production rate, and a peak CO yield (PCOY). Typically, adding CN results in corresponding reductions of 7.2, 3.74, and 12.4%, respectively. By contrast, incorporating PCN-2 leads to decreases of 39.9, 23.0, and 53.2%, respectively. Thermogravimetric analysis/infrared spectrometry analysis indicates that the use of these additives contributes to the inhibition of the release of decomposed volatiles. Thus, it is firmly believed that utilizing heteroatom-doped g-C<sub>3</sub>N<sub>4</sub> impairs the fire hazard of the polymer.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c00862","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High fire hazard, including heat release and toxic volatile production, has been the bottleneck in expanding the application of polystyrene (PS). Here, a heteroatom doping strategy is adopted to strengthen the flame-retardant effect of graphitic carbon nitride (g-C3N4) on PS. It is observed that the doped g-C3N4 fillers (PCN-1, PCN-2, PCN-3, BCN-1, BCN-2, BCN-3, PBCN-1, PBCN-2, and PBCN-3) show nanosheet-like morphologies, while common g-C3N4 presents bulky morphology. Also, the doped g-C3N4 fillers show higher thermal stability than common g-C3N4. Consequently, the doped g-C3N4 fillers show a better dispersion state in the PS matrix, benefiting the generation of an efficient barrier network. Cone results reveal that using the doped g-C3N4 fillers endows the polymer with a lower peak heat release rate, a peak smoke production rate, and a peak CO yield (PCOY). Typically, adding CN results in corresponding reductions of 7.2, 3.74, and 12.4%, respectively. By contrast, incorporating PCN-2 leads to decreases of 39.9, 23.0, and 53.2%, respectively. Thermogravimetric analysis/infrared spectrometry analysis indicates that the use of these additives contributes to the inhibition of the release of decomposed volatiles. Thus, it is firmly believed that utilizing heteroatom-doped g-C3N4 impairs the fire hazard of the polymer.

Abstract Image

Abstract Image

用于降低聚苯乙烯火灾危险的掺杂杂原子的石墨碳氮化物
聚苯乙烯(PS)的高火灾危险性,包括热释放和有毒挥发物的产生,一直是扩大其应用的瓶颈。本文采用杂原子掺杂策略来加强石墨氮化碳(g-C3N4)在聚苯乙烯上的阻燃效果。研究发现,掺杂的 g-C3N4 填充物(PCN-1、PCN-2、PCN-3、BCN-1、BCN-2、BCN-3、PBCN-1、PBCN-2 和 PBCN-3)呈现出纳米片状形态,而普通 g-C3N4 则呈现出笨重形态。此外,掺杂 g-C3N4 填料比普通 g-C3N4 具有更高的热稳定性。因此,掺杂 g-C3N4 填料在 PS 基体中显示出更好的分散状态,有利于生成高效的阻挡层网络。锥形结果显示,使用掺杂 g-C3N4 填料的聚合物具有更低的峰值热释放率、峰值烟雾产生率和峰值 CO 产率(PCOY)。通常情况下,添加氯化萘可使峰值热释放率、峰值烟雾产生率和峰值 CO 产率分别降低 7.2%、3.74% 和 12.4%。相比之下,加入 PCN-2 则可分别降低 39.9%、23.0% 和 53.2%。热重分析/红外光谱分析表明,使用这些添加剂有助于抑制分解挥发物的释放。因此,我们坚信,使用掺杂杂原子的 g-C3N4 会降低聚合物的火灾危险性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信