Fabrication of a new nickel iron-titanate perovskite composite with enhanced visible light photocatalytic activity

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Byung-Geon Park
{"title":"Fabrication of a new nickel iron-titanate perovskite composite with enhanced visible light photocatalytic activity","authors":"Byung-Geon Park","doi":"10.1007/s11243-024-00595-6","DOIUrl":null,"url":null,"abstract":"<p>In this study, a nickel iron-titanate (NiFeTiO<sub>3</sub>) perovskite composite was prepared newly and its photocatalytic activity was evaluated under visible light irradiation. The composite material was prepared by a synthetic method combining the sol–gel method and the solvothermal method. The physicochemical and optical properties of the prepared NiFeTiO<sub>3</sub> perovskites were investigated. In this study, a newly prepared NiFeTiO<sub>3</sub> perovskite composite was evaluated for its photocatalytic activity under visible light irradiation. The composite material was synthesized using a combination of the sol–gel method and the solvothermal method. The physicochemical and optical properties of the prepared NiFeTiO<sub>3</sub> perovskites were investigated. The perovskite composites with the NiFeTiO<sub>3</sub> structure had excellent absorption ability for visible light above 800 nm. Its bandgap energy was found to be approximately 1.8 eV. The photocatalytic activity of the NiFeTiO<sub>3</sub> composite was evaluated under visible light irradiation. The NiFeTiO<sub>3</sub> had superior visible light absorption ability compared to NiTiO<sub>3</sub>. It had excellent decomposition performance for methylene blue and formaldehyde. In addition, the photocatalytic activity for sterilizing pathogenic bacteria was much higher than that of NiTiO<sub>3</sub> perovskite. In the water splitting by solar energy, the NiFeTiO<sub>3</sub> catalysts produced hydrogen through a photocatalytic decomposition reaction. The NiFeTiO<sub>3</sub> composite was considered a perovskite composite with significantly improved photocatalytic function due to its high sensitivity to visible light.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11243-024-00595-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a nickel iron-titanate (NiFeTiO3) perovskite composite was prepared newly and its photocatalytic activity was evaluated under visible light irradiation. The composite material was prepared by a synthetic method combining the sol–gel method and the solvothermal method. The physicochemical and optical properties of the prepared NiFeTiO3 perovskites were investigated. In this study, a newly prepared NiFeTiO3 perovskite composite was evaluated for its photocatalytic activity under visible light irradiation. The composite material was synthesized using a combination of the sol–gel method and the solvothermal method. The physicochemical and optical properties of the prepared NiFeTiO3 perovskites were investigated. The perovskite composites with the NiFeTiO3 structure had excellent absorption ability for visible light above 800 nm. Its bandgap energy was found to be approximately 1.8 eV. The photocatalytic activity of the NiFeTiO3 composite was evaluated under visible light irradiation. The NiFeTiO3 had superior visible light absorption ability compared to NiTiO3. It had excellent decomposition performance for methylene blue and formaldehyde. In addition, the photocatalytic activity for sterilizing pathogenic bacteria was much higher than that of NiTiO3 perovskite. In the water splitting by solar energy, the NiFeTiO3 catalysts produced hydrogen through a photocatalytic decomposition reaction. The NiFeTiO3 composite was considered a perovskite composite with significantly improved photocatalytic function due to its high sensitivity to visible light.

Abstract Image

制备具有更强可见光光催化活性的新型镍铁钛过氧化物复合材料
本研究新制备了一种镍铁钛酸(NiFeTiO3)包晶石复合材料,并对其在可见光照射下的光催化活性进行了评估。该复合材料采用溶胶-凝胶法和溶胶-热法相结合的合成方法制备。研究了所制备的 NiFeTiO3 包晶石的物理化学和光学性质。本研究评估了新制备的 NiFeTiO3 包晶复合材料在可见光照射下的光催化活性。该复合材料采用溶胶-凝胶法和溶胶-热法相结合的方法合成。研究了所制备的 NiFeTiO3 包晶的物理化学和光学特性。具有 NiFeTiO3 结构的包晶复合材料对 800 纳米以上的可见光具有极佳的吸收能力。其带隙能约为 1.8 eV。在可见光照射下,对 NiFeTiO3 复合材料的光催化活性进行了评估。与 NiTiO3 相比,NiFeTiO3 具有更强的可见光吸收能力。它对亚甲蓝和甲醛具有优异的分解性能。此外,它在杀灭病原菌方面的光催化活性也远高于 NiTiO3 包晶。在利用太阳能进行水分离时,NiFeTiO3 催化剂通过光催化分解反应产生氢气。NiFeTiO3 复合材料对可见光的灵敏度高,因此被认为是一种光催化功能显著提高的过氧化物复合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信