{"title":"Radiative and electron-impact transitions of W I for spectroscopic diagnostics","authors":"Duck-Hee Kwon, Paul Indelicato","doi":"10.1140/epjd/s10053-024-00876-w","DOIUrl":null,"url":null,"abstract":"<p>Energy levels, transition rates, and electron-impact ionization and excitation cross sections for W I are calculated by multi-configuration Dirac–Fock (MCDF) method using the MDFGME code which aims at improving the accuracies of the atomic data which has been crucial for spectroscopic diagnostics of erosion rate of W in plasma surface interaction. Particular attention has been paid to the core–core (CC) and core–valence (CV) electron correlation effects on the level energies and radiative transition rates. The inclusion of the CC and CV electron correlations significantly improves an agreement with the atomic structure data based on experiments. The electron-impact ionization and excitation cross sections are obtained employing binary-encounter Bethe model and scaled plane wave Born approximation, respectively, from the wave functions by the MCDF calculation The obtained collision cross sections and rate coefficients are compared with other available data, which has been used to determine the erosion rate of W with spectral lines in the range of 400–525 nm.\n</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00876-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Energy levels, transition rates, and electron-impact ionization and excitation cross sections for W I are calculated by multi-configuration Dirac–Fock (MCDF) method using the MDFGME code which aims at improving the accuracies of the atomic data which has been crucial for spectroscopic diagnostics of erosion rate of W in plasma surface interaction. Particular attention has been paid to the core–core (CC) and core–valence (CV) electron correlation effects on the level energies and radiative transition rates. The inclusion of the CC and CV electron correlations significantly improves an agreement with the atomic structure data based on experiments. The electron-impact ionization and excitation cross sections are obtained employing binary-encounter Bethe model and scaled plane wave Born approximation, respectively, from the wave functions by the MCDF calculation The obtained collision cross sections and rate coefficients are compared with other available data, which has been used to determine the erosion rate of W with spectral lines in the range of 400–525 nm.
摘要 利用 MDFGME 代码,采用多构型 Dirac-Fock (MCDF) 方法计算了 W I 的能级、跃迁速率、电子撞击电离和激发截面,旨在提高原子数据的精确度,这对于等离子体表面相互作用中 W 的侵蚀速率的光谱诊断至关重要。我们特别关注了核-核(CC)和核-价(CV)电子相关对电平能量和辐射转变率的影响。加入 CC 和 CV 电子相关后,与基于实验的原子结构数据的一致性得到了显著提高。利用 MCDF 计算的波函数,分别采用二元对碰 Bethe 模型和缩放平面波 Born 近似法获得了电子碰撞电离和激发截面。将获得的碰撞截面和速率系数与其他可用数据进行了比较,这些数据已被用于确定 W 在 400-525 nm 范围内光谱线的侵蚀速率。
期刊介绍:
The European Physical Journal D (EPJ D) presents new and original research results in:
Atomic Physics;
Molecular Physics and Chemical Physics;
Atomic and Molecular Collisions;
Clusters and Nanostructures;
Plasma Physics;
Laser Cooling and Quantum Gas;
Nonlinear Dynamics;
Optical Physics;
Quantum Optics and Quantum Information;
Ultraintense and Ultrashort Laser Fields.
The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.