Hybrid Perovskite Molecular Rotor Ferroelastic Semiconductor Constructed by Supramolecular Assembly

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Hua-Kai Li, Wang Luo, Le Ye, Ze-Jiang Xu, Mei-Ling Ren, Chao Shi, Heng-Yun Ye, Le-Ping Miao and Na Wang*, 
{"title":"Hybrid Perovskite Molecular Rotor Ferroelastic Semiconductor Constructed by Supramolecular Assembly","authors":"Hua-Kai Li,&nbsp;Wang Luo,&nbsp;Le Ye,&nbsp;Ze-Jiang Xu,&nbsp;Mei-Ling Ren,&nbsp;Chao Shi,&nbsp;Heng-Yun Ye,&nbsp;Le-Ping Miao and Na Wang*,&nbsp;","doi":"10.1021/acs.cgd.3c01378","DOIUrl":null,"url":null,"abstract":"<p >Organic–inorganic hybrid ferroelastic materials have emerged as promising candidates for various applications such as mechanical switches, signal conversions, and memory materials because of their convenient processing, structural flexibility, and environmental friendliness. Here, we reported a supramolecular assembly hybrid perovskite (15-crown-5·NH<sub>4</sub>)<sub>2</sub>TeCl<sub>6</sub> (<b>1</b>) semiconductor containing stator ammonium and rotor 15-crown-5 as cations and TeCl<sub>6</sub> as an anionic part. This hybrid perovskite shows a ferroelastic phase transition and dielectric switch induced by the motions of the crown rotor. In addition, it shows an X-ray detection response with a clear switching ratio of photocurrent 0.011 and dark current 0.001 nA cm<sup>–2</sup>. This study reveals the advantages of a supramolecular rotor strategy in discovering novel molecular ferroelastic semiconductor materials and provides a new avenue to explore functional hybrid molecular materials.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.3c01378","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic–inorganic hybrid ferroelastic materials have emerged as promising candidates for various applications such as mechanical switches, signal conversions, and memory materials because of their convenient processing, structural flexibility, and environmental friendliness. Here, we reported a supramolecular assembly hybrid perovskite (15-crown-5·NH4)2TeCl6 (1) semiconductor containing stator ammonium and rotor 15-crown-5 as cations and TeCl6 as an anionic part. This hybrid perovskite shows a ferroelastic phase transition and dielectric switch induced by the motions of the crown rotor. In addition, it shows an X-ray detection response with a clear switching ratio of photocurrent 0.011 and dark current 0.001 nA cm–2. This study reveals the advantages of a supramolecular rotor strategy in discovering novel molecular ferroelastic semiconductor materials and provides a new avenue to explore functional hybrid molecular materials.

Abstract Image

Abstract Image

通过超分子组装构建的混合包晶石分子转子铁弹性半导体
有机-无机杂化铁弹性材料因其加工方便、结构灵活和环境友好等优点,已成为机械开关、信号转换和记忆材料等各种应用的有前途的候选材料。在此,我们报道了一种超分子组装混合包晶(15-crown-5-NH4)2TeCl6 (1)半导体,其定子铵和转子 15-crown-5 为阳离子,TeCl6 为阴离子。这种混合包晶石显示了铁弹性相变和由冠转子运动诱导的介电转换。此外,它还具有 X 射线探测响应,光电流 0.011 nA cm-2 和暗电流 0.001 nA cm-2 的开关比非常明显。这项研究揭示了超分子转子策略在发现新型分子铁弹性半导体材料方面的优势,并为探索功能性混合分子材料提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信