M. Emilia Zambroni, Sol R. Martínez, Gonzalo E. Cagnetta, Luis E. Ibarra, Ariana Posadaz, Josefa F. Martucci, Silvia Romanini, Ernesto Alejandro Aramayo, Ana Lucía Cabral, Patricia Bertone, Rodrigo E. Palacios, María Lorena Gómez
{"title":"Multifunctional skin dressings synthesized via one‐pot photopolymerization: Advancing wound healing and infection prevention strategies","authors":"M. Emilia Zambroni, Sol R. Martínez, Gonzalo E. Cagnetta, Luis E. Ibarra, Ariana Posadaz, Josefa F. Martucci, Silvia Romanini, Ernesto Alejandro Aramayo, Ana Lucía Cabral, Patricia Bertone, Rodrigo E. Palacios, María Lorena Gómez","doi":"10.1002/pat.6490","DOIUrl":null,"url":null,"abstract":"In the field of wound healing treatment, the development of new materials is essential to cover multiple functions, such as acceleration of the healing process, prevention of infection and response to stimuli, especially if they present lower costs or are easier to manufacture. These properties are of great importance to prompt skin cicatrization. In this work, new multifunctional skin dressings for wound healing and infection prevention are developed based on new hydrogel materials. The dressings are produced via a straightforward and environmentally friendly one‐pot photopolymerization manufacturing process utilizing vitamin B2 aqueous solutions as sensitizer, and energy‐efficient blue light sources. These dressings exhibit a high swelling capacity, pH and temperature responsiveness, biocompatibility, antimicrobial activity in the absence of conventional antibiotics, and are capable of promoting wound healing. The formulation is based on the combination of three monomers: 2‐((methacryloyloxy)ethyl)trimethylammonium chloride, methacrylic acid and N‐vinyl caprolactam. Collagen, hyaluronic acid, and essential oil of hop are added to enhance antimicrobial properties and stimulate regenerative cellular processes. <jats:italic>In vivo</jats:italic> experiments have demonstrated that pristine dressings are superior in promoting collagen and fibroblast regeneration and accelerating cicatrization as compared to dressings containing natural products. The dressing embedded with hop also displayed antimicrobial characteristics. The preparation and testing of these new efficient wound dressings are described. This study is distinctive in its integration of environmentally conscious manufacturing techniques with innovative material formulations, resulting in superior wound dressings that are both cost‐effective and highly functional. By achieving enhanced healing and infection prevention without the employment of conventional antibiotics, this work represents a substantial advancement in sustainable and effective wound care management.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"3 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6490","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of wound healing treatment, the development of new materials is essential to cover multiple functions, such as acceleration of the healing process, prevention of infection and response to stimuli, especially if they present lower costs or are easier to manufacture. These properties are of great importance to prompt skin cicatrization. In this work, new multifunctional skin dressings for wound healing and infection prevention are developed based on new hydrogel materials. The dressings are produced via a straightforward and environmentally friendly one‐pot photopolymerization manufacturing process utilizing vitamin B2 aqueous solutions as sensitizer, and energy‐efficient blue light sources. These dressings exhibit a high swelling capacity, pH and temperature responsiveness, biocompatibility, antimicrobial activity in the absence of conventional antibiotics, and are capable of promoting wound healing. The formulation is based on the combination of three monomers: 2‐((methacryloyloxy)ethyl)trimethylammonium chloride, methacrylic acid and N‐vinyl caprolactam. Collagen, hyaluronic acid, and essential oil of hop are added to enhance antimicrobial properties and stimulate regenerative cellular processes. In vivo experiments have demonstrated that pristine dressings are superior in promoting collagen and fibroblast regeneration and accelerating cicatrization as compared to dressings containing natural products. The dressing embedded with hop also displayed antimicrobial characteristics. The preparation and testing of these new efficient wound dressings are described. This study is distinctive in its integration of environmentally conscious manufacturing techniques with innovative material formulations, resulting in superior wound dressings that are both cost‐effective and highly functional. By achieving enhanced healing and infection prevention without the employment of conventional antibiotics, this work represents a substantial advancement in sustainable and effective wound care management.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.