Casey I. Gallagher, David P. Bishop, Thomas E. Lockwood, Tristan Rawling, Robert J. Vandenberg
{"title":"Methods for negating the impact of zinc contamination to allow characterization of positive allosteric modulators of glycine receptors","authors":"Casey I. Gallagher, David P. Bishop, Thomas E. Lockwood, Tristan Rawling, Robert J. Vandenberg","doi":"10.3389/fnmol.2024.1392715","DOIUrl":null,"url":null,"abstract":"Zinc is a ubiquitous contaminant in many buffers, purified products and common labware that has previously been suggested to impact on the results of functional GlyR studies and may inadvertently cause the effectiveness of some GlyR modulators to be over-estimated. This could greatly impact the assessment of potential drug-candidates and contribute to the reduced effectiveness of compounds that reach clinical stages. This is especially true for GlyR modulators being developed for pain therapeutics due to the changes in spinal zinc concentrations that have been observed during chronic pain conditions. In this study we use two-electrode voltage clamp electrophysiology to evaluate the metal chelators tricine and Ca-EDTA, and show that tricine produces inhibitory effects at GlyRα<jats:sub>1</jats:sub> that are not mediated by zinc. We also utilized the zinc insensitive W170S mutation as a tool to validate metal chelators and confirm that zinc contamination has not impacted the examination of lipid modulators previously developed by our lab. This study helps to further develop methods to negate the impact of contaminating zinc in functional studies of GlyRs which should be incorporated into future studies that seek to characterize the activity of novel modulators at GlyRs.","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"23 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnmol.2024.1392715","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc is a ubiquitous contaminant in many buffers, purified products and common labware that has previously been suggested to impact on the results of functional GlyR studies and may inadvertently cause the effectiveness of some GlyR modulators to be over-estimated. This could greatly impact the assessment of potential drug-candidates and contribute to the reduced effectiveness of compounds that reach clinical stages. This is especially true for GlyR modulators being developed for pain therapeutics due to the changes in spinal zinc concentrations that have been observed during chronic pain conditions. In this study we use two-electrode voltage clamp electrophysiology to evaluate the metal chelators tricine and Ca-EDTA, and show that tricine produces inhibitory effects at GlyRα1 that are not mediated by zinc. We also utilized the zinc insensitive W170S mutation as a tool to validate metal chelators and confirm that zinc contamination has not impacted the examination of lipid modulators previously developed by our lab. This study helps to further develop methods to negate the impact of contaminating zinc in functional studies of GlyRs which should be incorporated into future studies that seek to characterize the activity of novel modulators at GlyRs.
期刊介绍:
Frontiers in Molecular Neuroscience is a first-tier electronic journal devoted to identifying key molecules, as well as their functions and interactions, that underlie the structure, design and function of the brain across all levels. The scope of our journal encompasses synaptic and cellular proteins, coding and non-coding RNA, and molecular mechanisms regulating cellular and dendritic RNA translation. In recent years, a plethora of new cellular and synaptic players have been identified from reduced systems, such as neuronal cultures, but the relevance of these molecules in terms of cellular and synaptic function and plasticity in the living brain and its circuits has not been validated. The effects of spine growth and density observed using gene products identified from in vitro work are frequently not reproduced in vivo. Our journal is particularly interested in studies on genetically engineered model organisms (C. elegans, Drosophila, mouse), in which alterations in key molecules underlying cellular and synaptic function and plasticity produce defined anatomical, physiological and behavioral changes. In the mouse, genetic alterations limited to particular neural circuits (olfactory bulb, motor cortex, cortical layers, hippocampal subfields, cerebellum), preferably regulated in time and on demand, are of special interest, as they sidestep potential compensatory developmental effects.