Microcalorimeter Absorber Optimization for ATHENA and LEM

IF 1.1 3区 物理与天体物理 Q4 PHYSICS, APPLIED
Edward Wassell, Joseph Adams, Simon Bandler, James Chervenak, Renata Cumbee, Fred Finkbeiner, Joshua Fuhrman, Samuel Hull, Richard Kelley, Caroline Kilbourne, Jennette Mateo, Haruka Muramatsu, Frederick Porter, Asha Rani, Kazuhiro Sakai, Stephen Smith, Nicholas Wakeham, Sang Yoon
{"title":"Microcalorimeter Absorber Optimization for ATHENA and LEM","authors":"Edward Wassell,&nbsp;Joseph Adams,&nbsp;Simon Bandler,&nbsp;James Chervenak,&nbsp;Renata Cumbee,&nbsp;Fred Finkbeiner,&nbsp;Joshua Fuhrman,&nbsp;Samuel Hull,&nbsp;Richard Kelley,&nbsp;Caroline Kilbourne,&nbsp;Jennette Mateo,&nbsp;Haruka Muramatsu,&nbsp;Frederick Porter,&nbsp;Asha Rani,&nbsp;Kazuhiro Sakai,&nbsp;Stephen Smith,&nbsp;Nicholas Wakeham,&nbsp;Sang Yoon","doi":"10.1007/s10909-024-03173-3","DOIUrl":null,"url":null,"abstract":"<div><p>High quantum efficiency (QE) X-ray absorbers are needed for future X-ray astrophysics telescopes. The Advanced Telescope for High ENergy Astrophysics (ATHENA) mission requirements for the X-ray Integral Field Unit (X-IFU) instrument dictate, at their most stringent, that the absorber achieve vertical QE &gt; 90.6% at 7 keV and low total heat capacity, 0.731 pJ/K. The absorber we have designed is 313 µm square composed of 1.05 μm Au and 5.51 μm electroplated Bi films (Barret et al. in Exp Astron 55:373–426, 2023). Overhanging the TES, the absorber is mechanically supported by 6 small legs whose 5 μm diameter is tuned to the target thermal conductance for the device. Further requirements for the absorber for X-IFU include a &gt; 40% reflectance at wavelengths from 1 to 20 μm to reduce shot noise from infrared radiation from higher temperature stages in the cryostat. We meet this requirement by capping our absorbers with an evaporated Ti/Au thin film. Additionally, narrow gaps between absorbers are required for high fill fraction, as well as low levels of fine particulate remaining on the substrate and zero shorts between absorbers that may cause thermal crosstalk. The Light Element Mapper (LEM) is an X-ray probe concept optimized to explore the soft X-ray emission from 0.2 to 2.0 keV. These pixels for LEM require high residual resistance ratio (RRR) thin 0.5 µm Au absorbers to thermalize uniformly and narrow &lt; 2 μm gaps between pixels for high areal fill fraction. This paper reports upon technology developments required to successfully yield arrays of pixels for both mission concepts and presents first testing results of devices with these new absorber recipes.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"216 Part 3","pages":"417 - 426"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03173-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03173-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

High quantum efficiency (QE) X-ray absorbers are needed for future X-ray astrophysics telescopes. The Advanced Telescope for High ENergy Astrophysics (ATHENA) mission requirements for the X-ray Integral Field Unit (X-IFU) instrument dictate, at their most stringent, that the absorber achieve vertical QE > 90.6% at 7 keV and low total heat capacity, 0.731 pJ/K. The absorber we have designed is 313 µm square composed of 1.05 μm Au and 5.51 μm electroplated Bi films (Barret et al. in Exp Astron 55:373–426, 2023). Overhanging the TES, the absorber is mechanically supported by 6 small legs whose 5 μm diameter is tuned to the target thermal conductance for the device. Further requirements for the absorber for X-IFU include a > 40% reflectance at wavelengths from 1 to 20 μm to reduce shot noise from infrared radiation from higher temperature stages in the cryostat. We meet this requirement by capping our absorbers with an evaporated Ti/Au thin film. Additionally, narrow gaps between absorbers are required for high fill fraction, as well as low levels of fine particulate remaining on the substrate and zero shorts between absorbers that may cause thermal crosstalk. The Light Element Mapper (LEM) is an X-ray probe concept optimized to explore the soft X-ray emission from 0.2 to 2.0 keV. These pixels for LEM require high residual resistance ratio (RRR) thin 0.5 µm Au absorbers to thermalize uniformly and narrow < 2 μm gaps between pixels for high areal fill fraction. This paper reports upon technology developments required to successfully yield arrays of pixels for both mission concepts and presents first testing results of devices with these new absorber recipes.

Abstract Image

用于 ATHENA 和 LEM 的微量热计吸收器优化
未来的 X 射线天体物理学望远镜需要高量子效率(QE)的 X 射线吸收器。高能天体物理学高级望远镜(ATHENA)任务对 X 射线积分场单元(X-IFU)仪器的要求最为严格,要求吸收器在 7 keV 时达到 90.6% 的垂直 QE,总热容量低至 0.731 pJ/K。我们设计的吸收器为 313 微米见方,由 1.05 微米金膜和 5.51 微米电镀铋膜组成(Barret 等人,发表于 Exp Astron 55:373-426, 2023)。吸收器悬挂在 TES 上,由 6 个直径为 5 μm 的小脚机械支撑,这些小脚的直径可根据设备的目标热导率进行调整。X-IFU 对吸收器的进一步要求包括:在 1 到 20 μm 波长范围内的反射率为 40%,以减少低温恒温器中温度较高阶段的红外辐射所产生的射频噪声。我们用蒸发钛/金薄膜覆盖吸收器,以满足这一要求。此外,我们还要求吸收器之间的间隙要窄,以实现高填充率,同时基底上残留的微粒含量要低,吸收器之间的短路要少,以免造成热串扰。光元素绘图仪(LEM)是一种 X 射线探测概念,专门用于探索 0.2 至 2.0 千伏的软 X 射线发射。用于 LEM 的这些像素需要高残余电阻比 (RRR) 的 0.5 µm 薄金吸收器来均匀热化,像素之间还需要 2 µm 的窄间隙,以实现高面积填充率。本文报告了为成功生产这两种任务概念所需的像素阵列而进行的技术开发,并介绍了采用这些新吸收器配方的设备的首次测试结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Low Temperature Physics
Journal of Low Temperature Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
25.00%
发文量
245
审稿时长
1 months
期刊介绍: The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信