Study of Serrated Boundary Micromechanics During Micropillar Compression in Nickel-Based Superalloy

Manmath Kumar Dash, Longfangdi Shi, Yu-Lung Chiu
{"title":"Study of Serrated Boundary Micromechanics During Micropillar Compression in Nickel-Based Superalloy","authors":"Manmath Kumar Dash, Longfangdi Shi, Yu-Lung Chiu","doi":"10.1007/s11661-024-07467-9","DOIUrl":null,"url":null,"abstract":"<p>This study reports the interplay between grain boundary morphology and mechanical behaviour using micropillar compression. Quantitative findings indicate that serrated grain boundaries with multiple curvatures exhibit notably higher yield strengths compared to their straight counterparts. In a bi-crystal system, 18 pct increase in boundary length, achieved through multiple curvature boundaries, results in 21 pct increase in yield strength. The quasi-<i>in-situ</i> electron backscatter diffraction (EBSD) investigations show the concentration of plastic strain within preferentially oriented slip bands, with grain boundaries offering resistance, and slip band leads to changing directions as they traverse from one grain to another, with secondary slips emerging post-yielding during micropillar compression. As compression levels rise, a prominent uniform strain hardening rate emerges in grain boundaries characterized by multiple curvatures. Local resolved shear stress at grain boundaries experiences a pronounced reduction under the applied load, particularly when the serration wavelength exceeds 0.4, and the amplitude ranges from 0.3 to 0.5 times the total grain boundary length. An attempt is made here to shed light upon the underlying microscopic mechanisms that govern grain boundary micromechanics through a comprehensive three-dimensional analysis. It becomes evident that both boundary curvature and inclination of interface plane play critical roles in enhancing material strength, collectively contributing to a 21 pct increase in yield strength in current case of boundary with curvature. Additionally, these morphologies notably reduce the likelihood of heterogeneous plastic deformation compared to straight grain boundaries.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07467-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports the interplay between grain boundary morphology and mechanical behaviour using micropillar compression. Quantitative findings indicate that serrated grain boundaries with multiple curvatures exhibit notably higher yield strengths compared to their straight counterparts. In a bi-crystal system, 18 pct increase in boundary length, achieved through multiple curvature boundaries, results in 21 pct increase in yield strength. The quasi-in-situ electron backscatter diffraction (EBSD) investigations show the concentration of plastic strain within preferentially oriented slip bands, with grain boundaries offering resistance, and slip band leads to changing directions as they traverse from one grain to another, with secondary slips emerging post-yielding during micropillar compression. As compression levels rise, a prominent uniform strain hardening rate emerges in grain boundaries characterized by multiple curvatures. Local resolved shear stress at grain boundaries experiences a pronounced reduction under the applied load, particularly when the serration wavelength exceeds 0.4, and the amplitude ranges from 0.3 to 0.5 times the total grain boundary length. An attempt is made here to shed light upon the underlying microscopic mechanisms that govern grain boundary micromechanics through a comprehensive three-dimensional analysis. It becomes evident that both boundary curvature and inclination of interface plane play critical roles in enhancing material strength, collectively contributing to a 21 pct increase in yield strength in current case of boundary with curvature. Additionally, these morphologies notably reduce the likelihood of heterogeneous plastic deformation compared to straight grain boundaries.

Abstract Image

镍基超级合金微柱压缩过程中的锯齿状边界微观力学研究
本研究利用微柱压缩技术报告了晶界形态与机械性能之间的相互作用。定量研究结果表明,与直线晶界相比,具有多个曲率的锯齿形晶界具有更高的屈服强度。在双晶系统中,通过多曲率边界实现的边界长度增加 18%,使屈服强度增加 21%。准原位电子反向散射衍射(EBSD)研究表明,塑性应变集中在优先取向的滑移带内,晶界提供阻力,滑移带在从一个晶粒移动到另一个晶粒时改变方向,在微柱压缩过程中出现屈服后的二次滑移。随着压缩水平的升高,晶界中出现了明显的均匀应变硬化率,其特点是多曲率。在施加载荷的情况下,晶界处的局部分辨剪应力会明显降低,尤其是当锯齿波长超过 0.4,且振幅为晶界总长度的 0.3 至 0.5 倍时。本文试图通过全面的三维分析,揭示支配晶界微观力学的基本微观机制。结果表明,边界曲率和界面平面的倾斜度在提高材料强度方面起着至关重要的作用,在当前有曲率边界的情况下,它们共同使屈服强度提高了 21%。此外,与直晶粒边界相比,这些形态显著降低了异质塑性变形的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信